首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   37篇
  219篇
  2022年   3篇
  2021年   4篇
  2019年   2篇
  2018年   6篇
  2016年   5篇
  2015年   11篇
  2014年   7篇
  2013年   8篇
  2012年   14篇
  2011年   10篇
  2010年   11篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   7篇
  2003年   14篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   6篇
  1993年   3篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1976年   4篇
  1975年   2篇
  1973年   3篇
  1972年   1篇
  1970年   4篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1951年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
91.
Phenazine natural products/compounds possess a range of biological activities, including anti-microbial and cytotoxic, making them valuable starting materials for drug development in several therapeutic areas. These compounds are biosynthesized almost exclusively by eubacteria of both terrestrial and marine origins from erythrose 4-phosphate and phosphoenol pyruvate via the shikimate pathway. In this paper, we report isolation of actinomycete bacteria from marine sediment collected in the Trondheimfjord, Norway. Screening of the isolates for biological activity produced several “hits”, one of which was followed up by identification and purification of the active compound from the actinomycete bacterium Streptosporangium sp. The purified compound, identified as 1,6-dihydroxyphenazine-5,10-dioxide (iodinin), was subjected to extended tests for biological activity against bacteria, fungi and mammalian cells. In these tests, the iodinin demonstrated high anti-microbial and cytotoxic activity, and was particularly potent against leukaemia cell lines. This is the first report on the isolation of iodinin from a marine-derived Streptosporangium.  相似文献   
92.
Mx protein is one of several antiviral proteins that are induced by the type I interferons (IFN), IFNalpha and beta, in mammals. In this work induction of a 76 kDa Mx protein by double-stranded RNA (dsRNA) or type I IFN-like activity in Atlantic salmon macrophages, Atlantic salmon fibroblast cells (AS cells) and in Chinook salmon embryo cells (CHSE-214) is reported. Type I IFN-like activity was produced by the stimulation of Atlantic salmon macrophages with the synthetic dsRNA polyinosinic polycytidylic acid (poly I:C). A correlation appeared to exist between Mx protein expression and protection against infectious pancreatic necrosis virus (IPNV) induced by IFN in CHSE-214 cells. Several observations in the present work suggest that, as in mammals, the induction of Mx protein by dsRNA in fish cells primarily occurs via induction of type I IFN. First, type I IFN-like activity but not poly I:C, induced Mx protein expression in CHSE-214 cells. These cells apparently lack the ability to produce IFN in response to poly I:C. Second, the putative IFN induced maximal Mx protein expression 48 h earlier than poly I:C in AS cells. Third, the peak expression of Mx protein in macrophages induced by poly I:C occurred after 48 h whereas peak in IFN-like activity was observed by 24 h after addition of poly I:C. The present work supports the notion of using Mx protein as a molecular marker for the production of putative type I IFN in fish.  相似文献   
93.
94.
Recent high resolution x-ray structures of the β2-adrenergic receptor confirmed a close salt-bridge interaction between the suspected micro-switch residue ArgIII:26 (Arg3.50) and the neighboring AspIII:25 (Asp3.49). However, neither the expected "ionic lock" interactions between ArgIII:26 and GluVI:-06 (Glu6.30) in the inactive conformation nor the interaction with TyrV:24 (Tyr5.58) in the active conformation were observed in the x-ray structures. Here we find through molecular dynamics simulations, after removal of the stabilizing T4 lysozyme, that the expected salt bridge between ArgIII:26 and GluVI:-06 does form relatively easily in the inactive receptor conformation. Moreover, mutational analysis of GluVI:-06 in TM-VI and the neighboring AspIII:25 in TM-III demonstrated that these two residues do function as locks for the inactive receptor conformation as we observed increased G(s) signaling, arrestin mobilization, and internalization upon alanine substitutions. Conversely, TyrV:24 appears to play a role in stabilizing the active receptor conformation as loss of function of G(s) signaling, arrestin mobilization, and receptor internalization was observed upon alanine substitution of TyrV:24. The loss of function of the TyrV:24 mutant could partly be rescued by alanine substitution of either AspIII:25 or GluVI:-06 in the double mutants. Surprisingly, removal of the side chain of the ArgIII:26 micro-switch itself had no effect on G(s) signaling and internalization and only reduced arrestin mobilization slightly. It is suggested that ArgIII:26 is equally important for stabilizing the inactive and the active conformation through interaction with key residues in TM-III, -V, and -VI, but that the ArgIII:26 micro-switch residue itself apparently is not essential for the actual G protein activation.  相似文献   
95.
Arterio-venous fistulas (shunts between arteries and veins) are the preferred vascular access for hemodialysis. Despite their superior patency, compared with synthetic tubes and grafts, functional problems and inadequate flow rates are the common complications. Local flow conditions, in particular low and oscillating wall shear stresses (WSS), are central to vascular problems and a robust framework for analyzing flow conditions in vascular structures could provide an understanding of the mechanisms leading to vascular complications, such as stenoses, aneurisms, and thromboses.We hypothesize that a validated computational fluid dynamics (CFD) framework can be used to identify critical fistula configurations with elevated risk of complications. Therefore, the aim of the present study was to develop a CFD framework for analyzing fluid flow in complex vascular structures, such as arterio-venous fistulas validated by comparisons of in vitro volume flows with CFD results and flow fields from ultrasound scans with CFD simulations.Volume flows measured in vitro and CFD data differed quantitatively. However, good relative correlations exist between the data using logarithmic scales. Qualitatively, visual comparisons between ultrasound and CFD images showed good agreement between the two methods. In addition, WSS levels and the oscillatory shear index (OSI) were calculated and visualized on the model surface. The method was successfully validated and the method is deemed suitable for more thorough investigations into the field of vascular complications in a-v fistulas.  相似文献   
96.
Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics simulations showed that, although the fewer water molecules in rhodopsin were relatively movable, the hydrogen bond network of the β2-adrenergic receptor was fully loaded with water molecules that were surprisingly immobilized between the two rotamer switches, both apparently being in their closed conformation. Manipulations of the rotamer state of TyrVII:20 and TrpVI:13 demonstrated that these residues served as gates for the water molecules at the intracellular and extracellular ends of the hydrogen bond network, respectively. TrpVI:13 at the bottom of the main ligand-binding pocket was shown to apparently function as a catching trap for water molecules. Mutational analysis of the β2-adrenergic receptor demonstrated that the highly conserved polar residues of the hydrogen bond network were all important for receptor signaling but served different functions, some dampening constitutive activity (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended allosteric interface between the transmembrane segments being of crucial importance for receptor signaling and that part of the function of the rotamer micro-switches, TyrVII:20 and TrpVI:13, is to gate or trap the water molecules.  相似文献   
97.
Traits do not evolve independently. To understand how trait changes under selection might constrain adaptive changes, phenotypic and genetic correlations are typically considered within species, but these capture constraints across a few generations rather than evolutionary time. For longer-term constraints, comparisons are needed across species but associations may arise because of correlated selection pressures rather than genetic interactions. Implementing a unique approach, we use known patterns of selection to separate likely trait correlations arising due to correlated selection from those reflecting genetic constraints. We examined the evolution of stress resistance in >90 Drosophila species adapted to a range of environments, while controlling for phylogeny. Initially we examined the role of climate and phylogeny in shaping the evolution of starvation and body size, two traits previously not examined in this context. Following correction for phylogeny only a weak relationship between climate and starvation resistance was detected, while all of the variation in the relationship between body size and climate could be attributed to phylogeny. Species were divided into three environmental groups (hot and dry, hot and wet, cold) with the expectation that, if genetic correlations underpin trait correlations, these would persist irrespective of the environment, whereas selection-driven evolution should produce correlations dependent on the environment. We found positive associations between most traits in hot and dry environments coupled with high trait means. In contrast few trait correlations were observed in hot/wet and cold environments. These results suggest trait associations are primarily driven by correlated selection rather than genetic interactions, highlighting that such interactions are unlikely to limit evolution of stress resistance.  相似文献   
98.
Many viruses invade mucosal surfaces to establish infection in the host. Some viruses are restricted to mucosal surfaces, whereas others disseminate to sites of secondary replication. Studies of strain-specific differences in reovirus mucosal infection and systemic dissemination have enhanced an understanding of viral determinants and molecular mechanisms that regulate viral pathogenesis. After peroral inoculation, reovirus strain type 1 Lang replicates to high titers in the intestine and spreads systemically, whereas strain type 3 Dearing (T3D) does not. These differences segregate with the viral S1 gene segment, which encodes attachment protein σ1 and nonstructural protein σ1s. In this study, we define genetic determinants that regulate reovirus-induced pathology following intranasal inoculation and respiratory infection. We report that two laboratory isolates of T3D, T3DC and T3DF, differ in the capacity to replicate in the respiratory tract and spread systemically; the T3DC isolate replicates to higher titers in the lungs and disseminates, while T3DF does not. Two nucleotide polymorphisms in the S1 gene influence these differences, and both S1 gene products are involved. T3DC amino acid polymorphisms in the tail and head domains of σ1 protein influence the sensitivity of virions to protease-mediated loss of infectivity. The T3DC polymorphism at nucleotide 77, which leads to coding changes in both S1 gene products, promotes systemic dissemination from the respiratory tract. A σ1s-null virus produces lower titers in the lung after intranasal inoculation and disseminates less efficiently to sites of secondary replication. These findings provide new insights into mechanisms underlying reovirus replication in the respiratory tract and systemic spread from the lung.  相似文献   
99.
The primary target of the cAMP analogue 8-pCPT-2′-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2′-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2′-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2′O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2′-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2′-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2′-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2′-O-Me-cAMP did not affect platelet activation at similar concentrations.  相似文献   
100.
N-acyl-phosphatidylethanolamine is a precursor phospholipid for anandamide, oleoylethanolamide, and other N-acylethanolamines, and it may in itself have biological functions in cell membranes. Recently, N-palmitoyl-phosphatidylethanolamine (NAPE) has been reported to function as an anorectic hormone secreted from the gut and acting on the brain (Gillum et al., [5]). In the current study, two of our laboratories independently investigated whether NAPE metabolites may be involved in mediating the anorectic action of NAPE i.p. injected in mice. Thus, the anorectic activity of a non-hydrolysable NAPE analogue, having ether bonds instead of ester bonds at sn1 and sn2 was compared with that of NAPE in molar equivalent doses. Furthermore, the anorectic effect of NAPE in NAPE-hydrolysing phospholipase D knockout animals was investigated. As negative controls, the NAPE precursor phosphatidylethanolamine and the related phospholipids phosphatidylcholine and phosphatidic acid were also tested. All compounds except one were found to inhibit food intake, raising the possibility that the effect of NAPE is non-specific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号