首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   16篇
  国内免费   1篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   16篇
  2013年   11篇
  2012年   6篇
  2011年   12篇
  2010年   6篇
  2009年   10篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   9篇
  2004年   8篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1982年   1篇
排序方式: 共有138条查询结果,搜索用时 31 毫秒
51.

Background  

Disruption of epithelial cell-cell adhesions represents an early and important stage in tumor metastasis. This process can be modeled in vitro by exposing cells to chemical tumor promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C (PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell contact remain poorly understood. In the present study we investigate mechanisms by which PKC activation induces disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium.  相似文献   
52.
53.
54.
Occludin is a tetraspan integral membrane protein in epithelial and endothelial tight junction (TJ) structures that is projected to have two extracellular loops. We have used peptides emulating central regions of human occludin's first and second loops, termed O-A:101-121 and O-B:210-228, respectively, to examine potential molecular interactions between these two regions of occludin and other TJ proteins. A superficial biophysical assessment of A:101-121 and O-B:210-228 showed them to have dissimilar solution conformation characteristics. Although O-A:101-121 failed to strongly interact with protein components of the human epithelial intestinal cell line T84, O-B:210-228 selectively associated with occludin, claudin-one and the junctional adhesion molecule (JAM)-A. Further, the presence of O-B:210-228, but not O-A:101-121, impeded the recovery of functional TJ structures. A scrambled peptide sequences of O-B:210-228 failed to influence TJ assembly. These studies demonstrate distinct properties for these two extracellular segments of the occludin protein and provide an improved understanding of how specific domains of occludin may interact with proteins present at TJ structures.  相似文献   
55.
Epithelial tight junctions form a selectively permeable barrier to ions and small molecules. Junctional adhesion molecule 1 (JAM1/JAM-A/F11R) is a tight junction-associated transmembrane protein that has been shown to participate in the regulation of epithelial barrier function. In a recent study, we presented evidence suggesting that JAM1 homodimer formation is critical for epithelial barrier function (Mandell, K. J., McCall, I. C., and Parkos, C. A. (2004) J. Biol. Chem. 279, 16254-16262). Here we have used small interfering RNA to investigate the effect of the loss of JAM1 expression on epithelial cell function. Consistent with our previous study, knockdown of JAM1 was observed to increase paracellular permeability in epithelial monolayers. Interestingly, knockdown of JAM1 also produced dramatic changes in cell morphology, and a similar effect was observed with expression of a JAM1 mutant lacking the putative homodimer interface. Further studies revealed that JAM1 knockdown decreased cell-matrix adhesion and spreading on matrix proteins that are ligands of beta1 integrins. These changes were characterized by a decrease in beta1 integrin protein levels and loss of beta1 integrin staining at the cell surface. Immunolabeling of cells for the small GTPase Rap1, a known activator of beta1 integrins, revealed colocalization of Rap1 with JAM1 at intercellular junctions, and knockdown of JAM1 resulted in decreased Rap1 activity. Lastly, knockdown of Rap1b resulted in diminished beta1 integrin expression and altered cell morphology analogous to that observed with knockdown of JAM1. Together, these results suggest that JAM1 regulates epithelial cell morphology and beta1 integrin expression by modulating activity of the small GTPase Rap1.  相似文献   
56.
The beta2 integrin CD11b/CD18 is an integral membrane protein that is present in the plasma membrane and secondary granules of neutrophils and functions as a major adhesion molecule. Upon cellular activation, there is translocation of intracellular pools of CD11b/CD18 to the plasma membrane in concert with enhanced cellular adhesion. Although much is known about the function of CD11b/CD18, how this protein is transported within the cell is less well defined. Here we report that CD11b/CD18 specifically binds to BAP31, a member of a novel class of sorting proteins regulating cellular anterograde transport. Through experiments aimed at identifying CD11b/CD18-binding proteins, we produced a monoclonal antibody termed E1B2 that recognizes a 28-kDa membrane protein that co-precipitates with CD11b/CD18. Microsequence analysis of the E1B2 antigen revealed that it is BAP31. Co-association of CD11b/CD18 and BAP31 was confirmed in co-immunoprecipitation and protein binding assays. Additional experiments revealed that the binding of BAP31 to CD11b/CD18 was not dependent on divalent cations nor mediated by the I-domain of CD11b. Using glutathione S-transferase fusion chimeras, we determined that binding of CD11b/CD18 to BAP31 is mediated through interactions with the cytoplasmic tail of BAP31. Immunolocalization studies revealed colocalization of BAP31 and CD11b/CD18 within neutrophil secondary granules. Subcellular fractionation studies in polymorphonuclear leukocytes (PMN) revealed similar patterns of redistribution of BAP31 and CD11b/CD18 from fractions enriched in secondary granules to the plasma membrane following stimulation with formylmethionylleucylphenylalanine (fMLP). Given the known sorting properties of BAP31, these findings suggest that BAP31 may play a role in regulating intracellular trafficking of CD11b/CD18 in neutrophils.  相似文献   
57.
Myocardial infarction (MI) is the major cardiovascular disease. This can be caused by mutual interaction of environmental and genetic factors. The current study was designed to investigate the role of lipid metabolism related genetic polymorphisms with the onset of MI in Punjabi population of Pakistan. A total of 384 subjects was studied from April 2011 to July 2012. To determine the genetic associations with MI, the single nucleotide polymorphisms (SNPs) were genotyped by sequencing, as well as one label extension method. Out of eight SNPs in four candidate genes, seven genetic variants were significantly (P < 0.05) associated with elevated risk of MI. In current study two SNPs rs662799 risk allele G (P = 0.03) and rs3135506 risk allele C (P = 0.05) of APOA5 were found to be associated with significant higher risk of triglyceride levels, irrespective of age, sex, obesity, diabetes, hypertension and smoking. Gene variants (rs1558861, rs662799 and rs10750097) in APOA5 showed almost complete linkage disequilibrium and their minor allele frequencies (0.34, 0.28, and 0.41 respectively) were more prevalent (P < 0.05) in cases than controls. We further revealed risk haplotypes (C-T-G-A, G-C-A-G; P = 0.001) and protective haplotypes (G-T-A-G, C-C-G-A; P = 0.005) between these four SNPs for the progression of MI. Current study confirms the correlation between lipid metabolism related SNPs with MI and supports the role of APOA5 in raising plasma triglyceride levels in Pakistanis. However further studies are needed for delineating the role of these SNPs.  相似文献   
58.

Background  

Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion.  相似文献   
59.
Chemiluminescence (CL) of the rhodamine 6‐G‐diperiodatonickelate (IV) (Rh6‐G‐Ni(IV) complex) in the presence of Brij‐35 was examined in an alkaline medium and implemented using flow‐injection analysis to analyze Mn(II) in natural waters. Brij‐35 was identified as the surfactant of choice that enhanced CL intensity by about 62% of the reaction. The calibration curves were linear in the range 1.7 × 10?3 – 0.2 (0.9990, n = 7) and 8.0 × 10?4 – 0.1 μg ml?1 (0.9990, n = 7) with limits of detection (LODs) (S:N = 3) of 5.0 × 10?4 and 2.4 × 10?4 μg ml?1 without and with using an in‐line 8‐hydroxyquinoline (8‐HQ) resin mini‐column, respectively. The sample throughput and relative standard deviation were 200 h?1 and 1.7–2.2% in the range studied respectively. Mn(II) concentrations in certified reference materials and natural water samples was successfully determined. A brief discussion about the possible CL reaction mechanism is also given. In addition, analysis of V(III), Cr(III) and Fe(II) was also performed without and with using an in‐line 8–HQ column and selective elution of each metal ion was achieved by adjusting the pH of the sample carrier stream with aqueous HCl solution.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号