首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   14篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   15篇
  2014年   9篇
  2013年   13篇
  2012年   14篇
  2011年   19篇
  2010年   10篇
  2009年   9篇
  2008年   23篇
  2007年   15篇
  2006年   17篇
  2005年   12篇
  2004年   11篇
  2003年   9篇
  2002年   4篇
  2001年   2篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1978年   4篇
  1977年   3篇
  1975年   1篇
  1970年   4篇
  1964年   1篇
排序方式: 共有256条查询结果,搜索用时 922 毫秒
171.
The platelet integrin αIIbβ3 is widely accepted as a structural and a functional model of the broad integrin protein family. The four calcium-binding sites in the αIIb subunit contribute to biogenesis and stability of the protein. Mansour et al. (J Thromb Haemost 9:192–200, 2011) showed that the natural Asn2Asp mutation causing Glanzmann thrombasthenia, prevented surface expression of αIIbβ3, whereas the artificial Asn2Gln mutation only decreased its level. Molecular dynamics simulations and EDTA chelation assay were used here to explore the mechanism of these structural deformations. We show a considerable expansion of the calcium-binding site 3 in Asn2Asp mutation, whereas the Asn2Gln toggles between normal and expanded conformations. The αIIbβ3 surface expression level correlates to the relative spending time in the expanded conformation. By a comparison to other calcium-binding sites of αIIb and of other α integrins we show that the size of a calcium-binding loop is conserved. EDTA chelation assay shows a sensitivity to calcium removal, which correlates with the reduction in αIIbβ3 surface expression and with the calcium binding site expansion, thus verifying the simulation data. Here we indicate that Asn2 mutation affects a calcium-binding site 3 of αIIb, which structural deformation is proposed to deprive calcium binding and interfere with an integrin intracellular trafficking and its surface expression.  相似文献   
172.
RNA-editing-mediated exon evolution   总被引:4,自引:1,他引:3  

Background  

Alu retroelements are specific to primates and abundant in the human genome. Through mutations that create functional splice sites within intronic Alus, these elements can become new exons in a process denoted exonization. It was recently shown that Alu elements are also heavily changed by RNA editing in the human genome.  相似文献   
173.
Cyclooxygenase (COX) enzymes are molecular targets of nonsteroidal anti-inflammatory drugs (NSAIDs), the most used medication worldwide. However, the COX enzymes are not the sole molecular targets of NSAIDs. Recently, we showed that two NSAIDs, diclofenac and meclofenamate, also act as openers of Kv7.2/3 K(+) channels underlying the neuronal M-current. Here we designed new derivatives of diphenylamine carboxylate to dissociate the M-channel opener property from COX inhibition. The carboxylate moiety was derivatized into amides or esters and linked to various alkyl and ether chains. Powerful M-channel openers were generated, provided that the diphenylamine moiety and a terminal hydroxyl group are preserved. In transfected CHO cells, they activated recombinant Kv7.2/3 K(+) channels, causing a hyperpolarizing shift of current activation as measured by whole-cell patch-clamp recording. In sensory dorsal root ganglion and hippocampal neurons, the openers hyperpolarized the membrane potential and robustly depressed evoked spike discharges. They also decreased hippocampal glutamate and GABA release by reducing the frequency of spontaneous excitatory and inhibitory post-synaptic currents. In vivo, the openers exhibited anti-convulsant activity, as measured in mice by the maximal electroshock seizure model. Conversion of the carboxylate function into amide abolished COX inhibition but preserved M-channel modulation. Remarkably, the very same template let us generating potent M-channel blockers. Our results reveal a new and crucial determinant of NSAID-mediated COX inhibition. They also provide a structural framework for designing novel M-channel modulators, including openers and blockers.  相似文献   
174.
Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene.  相似文献   
175.
The COP9 Signalosome protein complex (CSN) is a pleiotropic regulator of plant development and contains eight-subunits. Six of these subunits contain the PCI motif which mediates specific protein interactions necessary for the integrity of the complex. COP9 complex subunit 7 (CSN7) contains an N-terminal PCI motif followed by a C-terminal extension which is also necessary for CSN function. A yeast-interaction trap assay identified the small subunit of ribonucelotide reductase (RNR2) from Arabidopsis as interacting with the C-terminal section of CSN7. This interaction was confirmed in planta by both bimolecular fluorescence complementation and immuoprecipitation assays with endogenous proteins. The subcellular localization of RNR2 was primarily nuclear in meristematic regions, and cytoplasmic in adult cells. RNR2 was constitutively nuclear in csn7 mutant seedlings, and was also primarily nuclear in wild type seedlings following exposure to UV-C. These two results correlate with constitutive expression of several DNA-damage response genes in csn7 mutants, and to increased tolerance of csn7 seedlings to UV-C treatment. We propose that the CSN is a negative regulator of RNR activity in Arabidopsis.  相似文献   
176.
A nitrifying continuous stirred tank reactor was used as multipurpose bioreactor and it was operated for 325 days at 220 mg NH(4)(+)-N/Ld, 89 mg p-cresol-C /Ld and 36-76 mg S(2-)/Ld. The bioreactor was fed in sequential way, firstly with ammonium, achieving a consumption efficiency of 89%, with a nitrate yield of 0.99. Afterward, p-cresol was fed, achieving ammonium and p-cresol consumption efficiencies of 95% and 100%, respectively. The nitrate yield was higher and no aromatic intermediaries from p-cresol were detected. Finally sulfide was fed and the consumption efficiencies for all substrates were of 100%, being nitrate, HCO(3)(-) and sulfate the end products. The kinetic results showed that biological sulfide consumption was 13-fold faster than the chemical oxidation. This is the first time that a nitrifying reactor can be used for multiple purposes and also for the simultaneous removal of ammonium, sulfide and p-cresol in one step.  相似文献   
177.
Proper functioning of the protein-folding quality control network depends on the network's ability to discern diverse structural perturbations to the native states of its protein substrates. Despite the centrality of the detection of misfolded states to cell home-ostasis, very little is known about the exact sequence and structural features that mark a protein as being misfolded. To investigate these features, we studied the requirements for the degradation of the yeast kinetochore protein Ndc10p. Mutant Ndc10p is a substrate of a protein-folding quality control pathway mediated by the E3 ubiquitin (Ub) ligase Doa10p at the endoplasmic reticulum (ER)/nuclear envelope membrane. Analysis of Ndc10p mutant derivatives, employing a reverse genetics approach, identified an autonomous quality control-associated degradation motif near the C-terminus of the protein. This motif is composed of two indispensable hydrophobic elements: a hydrophobic surface of an amphipathic helix and a loosely structured hydrophobic C-terminal tail. Site-specific point mutations expose these elements, triggering ubiquitin-mediated and HSP70 chaperone-dependent degradation of Ndc10p. These findings substantiate the ability of the ER quality control system to recognize subtle perturbation(s) in the native structure of a nuclear protein.  相似文献   
178.
179.
Phylogenetic analyses have corroborated the discovery of three internal transcribed spacer (ITS) Types in Terfezia boudieri isolates in the course of earlier studies and have emphasized the divergence of Type 2 from Types 1 and 3. The application of molecular and physiological tools described below, revealed the existence of cryptic species within T. boudieri. The markers used include sequences taken from the 5′ end of the ribosomal large subunit gene, a chitin synthase partial sequence, β-tubulin partial sequence and amplified fragment length polymorphism (AFLP)-based markers. Following initial sequencing of a single PCR amplified sample for each Type, mass analysis of specimens relied on RFLP differences between the Types. Over 100 fruit bodies, 30 or more specimens for each ITS Type, were tested with each of the markers. The markers analysis divided the isolates into three groups, each correlated to a specific ITS Type. Two of the physiological traits examined: mycelial proliferation and mycorrhiza formation, consistently showed responses paralleling the ITS Types; the data presented suggest that T. boudieri is comprised of three cryptic species.  相似文献   
180.
The adhesion molecule CD58 is natively expressed in both a glycosylphosphatidylinositol (GPI)-anchored form and a transmembrane form. We previously demonstrated that the two isoforms of CD58 are differentially distributed in the cell membrane. The GPI-linked form resides in lipid rafts while the transmembrane form resides outside lipid rafts. Following cross-linking a fraction of transmembrane CD58 redistributes to lipid rafts. It has also been demonstrated that ligand binding to CD58 induces biological functions such as cytokine production and immunoglobulin isotype switching, indicating that cell–cell interactions result in CD58-mediated signal transduction. However, the signaling pathways involved in these activation processes are poorly defined. Here we show for the first time that cross-linking of CD58 induces protein tyrosine phosphorylation of BLNK, Syk and PLCγ, and activation of ERK and Akt/PKB. In addition, we studied how these signaling events relate to the distinct membrane localization of the two isoforms of CD58. We demonstrate that cross-linking of CD58 triggers signaling that is predominantly associated with transmembrane CD58 in nonraft microdomains. Moreover, signaling through transmembrane CD58 does not depend on coexpression of the GPI-linked isoform. Thus, despite the residence of its GPI-anchored isoform in lipid rafts and the translocation of a fraction of its transmembrane isoform to lipid rafts, CD58 signaling is triggered by the transmembrane isoform outside lipid rafts. These findings corroborate signaling outside lipid rafts, as opposed to the established notion that rafts function as essential platforms for signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号