首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   959篇
  免费   69篇
  国内免费   1篇
  2023年   6篇
  2022年   10篇
  2021年   26篇
  2020年   17篇
  2019年   17篇
  2018年   17篇
  2017年   21篇
  2016年   35篇
  2015年   58篇
  2014年   39篇
  2013年   68篇
  2012年   109篇
  2011年   84篇
  2010年   51篇
  2009年   54篇
  2008年   70篇
  2007年   59篇
  2006年   55篇
  2005年   55篇
  2004年   40篇
  2003年   40篇
  2002年   34篇
  2001年   4篇
  2000年   10篇
  1999年   2篇
  1998年   10篇
  1997年   7篇
  1996年   1篇
  1995年   6篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1972年   1篇
  1968年   1篇
排序方式: 共有1029条查询结果,搜索用时 15 毫秒
101.
The latency-related (LR) gene of bovine herpesvirus 1 (BHV-1) is abundantly expressed during latency. A mutant BHV-1 strain that contains three stop codons at the 5′ terminus of the LR gene (LR mutant) does not reactivate from latency. This study demonstrates that the LR mutant does not express open reading frame 2 or an adjacent reading frame that lacks an initiating ATG (reading frame C). Since the LR mutant and wild-type BHV-1 express similar levels of LR RNA, we conclude that LR protein expression plays an important role in regulating the latency reactivation cycle in cattle.  相似文献   
102.
Both the biological significance and the molecular mechanism of endoreduplication (END) have been debated for a long time by cytogeneticists and researchers into cell cycle enzymology and dynamics alike. Mainly due to the fact that a wide variety of agents have been reported as able to induce endoreduplication and the diversity of cell types where it has been described, until now no clear or unique mechanism of induction of this phenomenon, rare in animals but otherwise quite common in plants, has been proposed. DNA topoisomerase II (topo II), plays a major role in mitotic chromosome segregation after DNA replication. The classical topo II poisons act by stabilizing the enzyme in the so-called cleavable complex and result in DNA damage as well as END, while the true catalytic inhibitors, which are not cleavable-complex-stabilizers, do induce END without concomitant DNA and chromosome damage. Taking into account these observations on the induction of END by drugs that interfere with topo II, together with our recently obtained evidence that the nature of DNA plays an important role for chromosome segregation [Cortes, F., Pastor, N., Mateos, S., Dominguez, I., 2003. The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes. DNA Repair 2, 719-726.], a straightforward model is proposed in which the different mechanisms leading to induced END are considered.  相似文献   
103.
Paramagnetic beads have considerable potential as identification tags in biological analysis. For example, magnetic sensor-based arrays using the magnetic field generated by paramagnetic beads to test hybridization between interacting molecules have attracted widespread interest in recent years. However, application of paramagnetic beads as identification tags is still limited, since they do not permit differentiation between samples for multiplex analysis. Here, we report the application of a novel encoding of paramagnetic beads with peptide sequences. This strategy allows DNA samples labeled with peptide-encoded paramagnetic beads to be identified by the selective enzymatic cleavage of each peptide cross-linker.  相似文献   
104.
In this paper we evaluated the influence of the protein concentration and a formulation vehicle on the stability of recombinant human Interferon alpha 2b (rhIFN-alpha2b) in solution. The effect of the protein content (from 1 to 100 MIU/ml) at 37 degrees C, showed that higher concentration of this cytokine protected against the loss of bioactivity (antiviral titration) better than the lower concentrations. In contrast, rhIFN-alpha2b at 50 and 100 MIU/ml decreased the SDS/PAGE- and RP-HPLC-determined purity faster than samples at 1 or 10 MIU/ml. According to these results, 10 MIU/ml rhIFN-alpha2b was the best choice to evaluate the influence of a formulation on the stability of this cytokine. Taking this into consideration, we studied the stability of a liquid and albumin-free formulation of this protein at the recommended storage temperature (5+/-3 degrees C) and under accelerated conditions (28+/-2 degrees C). Accelerated storage results showed an acceptable biochemical stability of the active ingredient throughout 2 months. Real-time storage data confirmed the good biochemical stability of this formulation for 30 months.  相似文献   
105.
Here we examine the contribution of actin dynamics to the architecture and pH of the Golgi complex. To this end, we have used toxins that depolymerize (cytochalasin D, latrunculin B, mycalolide B, and Clostridium botulinum C2 toxin) or stabilize (jasplakinolide) filamentous actin. When various clonal cell lines were examined by epifluorescence microscopy, all of these actin toxins induced compaction of the Golgi complex. However, ultrastructural analysis by transmission electron microscopy and electron tomography/three-dimensional modelling of the Golgi complex showed that F-actin depolymerization first induces perforation/fragmentation and severe swelling of Golgi cisternae, which leads to a completely disorganized structure. In contrast, F-actin stabilization results only in cisternae perforation/fragmentation. Concomitantly to actin depolymerization-induced cisternae swelling and disorganization, the intra-Golgi pH significantly increased. Similar ultrastructural and Golgi pH alkalinization were observed in cells treated with the vacuolar H+ -ATPases inhibitors bafilomycin A1 and concanamycin A. Overall, these results suggest that actin filaments are implicated in the preservation of the flattened shape of Golgi cisternae. This maintenance seems to be mediated by the regulation of the state of F-actin assembly on the Golgi pH homeostasis.  相似文献   
106.
Members of the aureolic acid family are tricyclic polyketides with antitumor activity which are produced by different streptomycete species. These members are glycosylated compounds with two oligosaccharide chains of variable sugar length. They interact with the DNA minor groove in high-GC-content regions in a nonintercalative way and with a requirement for magnesium ions. Mithramycin and chromomycins are the most representative members of the family, mithramycin being used as a chemotherapeutic agent for the treatment of several cancer diseases. For chromomycin and durhamycin A, antiviral activity has also been reported. The biosynthesis gene clusters for mithramycin and chromomycin A3 have been studied in detail by gene sequencing, insertional inactivation, and gene expression. Most of the biosynthetic intermediates in these pathways have been isolated and characterized. Some of these compounds showed an increase in antitumor activity in comparison with the parent compounds. A common step in the biosynthesis of all members of the family is the formation of the tetracyclic intermediate premithramycinone. Further biosynthetic steps (glycosylation, methylations, acylations) proceed through tetracyclic intermediates which are finally converted into tricyclic compounds by the action of a monooxygenase, a key event for the biological activity. Heterologous expression of biosynthetic genes from other aromatic polyketide pathways in the mithramycin producer (or some mutants) led to the isolation of novel hybrid compounds.Felipe Lombó and Nuria Menéndez have equally contribute to this work.  相似文献   
107.
Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most likely candidate disease genes from these gene sets. Here, we review seven independent computational disease gene prioritization methods, and then apply them in concert to the analysis of 9556 positional candidate genes for type 2 diabetes (T2D) and the related trait obesity. We generate and analyse a list of nine primary candidate genes for T2D genes and five for obesity. Two genes, LPL and BCKDHA, are common to these two sets. We also present a set of secondary candidates for T2D (94 genes) and for obesity (116 genes) with 58 genes in common to both diseases.  相似文献   
108.
The correlation between water physicochemical parameters and eukaryotic benthic composition was examined in Río Tinto. Principal component analysis showed a high inverse relationship between pH and most of the heavy metals analyzed as well as Dunaliella sp., while Chlamydomonas sp. abundance was positively related. Zn, Cu, and Ni clustered together and showed a strong inverse correlation with the diversity coefficient and most of the species analyzed. These eukaryotic communities seem to be more influenced by the presence of heavy metals than by the pH.  相似文献   
109.
The mitochondria of the respiratory yeast Kluyveromyces lactis are able to reoxidize cytosolic NADPH. Previously, we characterized an external alternative dehydrogenase, KlNde1p, having this activity. We now characterize the second external alternative dehydrogenase of K. lactis mitochondria, KlNde2p. We examined its role in cytosolic NADPH reoxidation by studying heterologous expression of KlNDE2 in Saccharomyces cerevisiae mutants and by constructing Deltaklnde1 and Deltaklnde2 mutants. KlNde2p uses NADH or NADPH as substrates, its activity in isolated mitochondria is not regulated by exogenously added calcium and it is not down-regulated when the cells grow in glucose versus lactate. KlNde2p shows lower affinity for NADPH than KlNde1p. Both enzymes show similar pH optimum.  相似文献   
110.
A series of 6-phenyl-3(2H)-pyridazinones with a diverse range of substituents in the 5-position have been prepared and evaluated in the search for new antiplatelet agents. A significant dependence of the substituent on the inhibitory effect has been observed. The pharmacological study of these compounds confirms that modification of the chemical group at position 5 of the 6-phenyl-3(2H)-pyridazinone system influences both variations in the antiplatelet activity and the mechanism of action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号