首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   953篇
  免费   67篇
  国内免费   1篇
  1021篇
  2023年   6篇
  2022年   8篇
  2021年   26篇
  2020年   17篇
  2019年   17篇
  2018年   17篇
  2017年   20篇
  2016年   33篇
  2015年   59篇
  2014年   39篇
  2013年   67篇
  2012年   111篇
  2011年   83篇
  2010年   51篇
  2009年   52篇
  2008年   66篇
  2007年   59篇
  2006年   54篇
  2005年   55篇
  2004年   39篇
  2003年   39篇
  2002年   35篇
  2001年   4篇
  2000年   10篇
  1999年   3篇
  1998年   10篇
  1997年   7篇
  1996年   2篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1986年   2篇
  1981年   1篇
  1972年   1篇
  1968年   1篇
  1961年   1篇
排序方式: 共有1021条查询结果,搜索用时 15 毫秒
51.
Sperm cells represent a special exocytotic system since mature sperm cells contain only one large secretory vesicle, the acrosome, which fuses with the overlying plasma membrane during the fertilization process. Acrosomal exocytosis is believed to be regulated by activation of SNARE proteins. In this paper, we identified specific members of the SNARE protein family, i.e., the t-SNAREs syntaxin1 and 2, and the v-SNARE VAMP, present in boar sperm cells. Both syntaxins were predominantly found in the plasma membrane whereas v-SNAREs are mainly located in the outer acrosomal membrane of these cells. Under non-capacitating conditions both syntaxins and VAMP are scattered in well-defined punctate structures over the entire sperm head. Bicarbonate-induced in vitro activation in the presence of BSA causes a relocalization of these SNAREs to a more homogeneous distribution restricted to the apical ridge area of the sperm head, exactly matching the site of sperm zona binding and subsequent induced acrosomal exocytosis. This redistribution of syntaxin and VAMP depends on cholesterol depletion and closely resembles the previously reported redistribution of lipid raft marker proteins. Detergent-resistant membrane isolation and subsequent analysis shows that a significant proportion of syntaxin emerges in the detergent-resistant membrane (raft) fraction under such conditions, which is not the case under those conditions where cholesterol depletion is blocked. The v-SNARE VAMP displays a similar cholesterol depletion-dependent lateral and raft redistribution. Taken together, our results indicate that redistribution of syntaxin and VAMP during capacitation depends on association of these SNAREs with lipid rafts and that such a SNARE-raft association may be essential for spatial control of exocytosis and/or regulation of SNARE functioning.  相似文献   
52.
AIM: To evaluate the effect of Helicobacter pylori eradication on ulcer bleeding recurrence in a prospective, long-term study including more than 400 patients. METHODS: Patients with peptic ulcer bleeding were prospectively included. H. pylori infection was confirmed by rapid urease test, histology or (13)C-urea breath test. Several eradication regimens were used. Ranitidine 150 mg was administered daily until eradication was confirmed by breath test 8 weeks after completing eradication therapy. Patients with therapy failure received a second or third course of therapy. Patients with eradication success did not receive maintenance anti-ulcer therapy, and were controlled yearly with a repeated breath test. RESULTS: Four hundred and twenty-two patients were followed up for at least 12 months, with a total of 906 patient-years of follow up. Mean age was 59 years, and 35% were previous nonsteroidal anti-inflammatory drug (NSAID) users. Sixty-nine percent had duodenal, 24% gastric, and 7% pyloric ulcer. Recurrence of bleeding was demonstrated in two patients at 1 year (incidence: 0.22% per patient-year of follow up), which occurred after NSAID use in both cases. CONCLUSION: Peptic ulcer rebleeding does not occur in patients with complicated ulcers after H. pylori eradication. Maintenance anti-ulcer (antisecretory) therapy is not necessary if eradication is achieved.  相似文献   
53.
Nanofiltration assures that protein therapeutics are free of adventitious agents such as viruses. Nanofilter pores must allow passage of protein drugs but be small enough to retain viruses. Five nanofilters have been evaluated to identify those that can be used interchangeably to yield a high purity Coagulation Factor IX product. When product preparations prior to nanofiltration were analyzed using electrophoresis, Western blot, liquid chromatography – tandem mass spectrometry and size exclusion HPLC, factor IX, inter – α – trypsin inhibitor and C4b binding protein (C4BP) were observed. C4BP was removed from product by all five nanofilters when nanofiltration was performed at physiological ionic strength. However, at high ionic strength, C4BP was removed by only two nanofilters. HPLC indicated that the Stokes radius of C4BP was larger at low ionic strength than at high ionic strength. The results suggest that C4BP exists in an open conformation at physiological ionic strength and is removed by nanofiltration whereas, at high ionic strength, the protein collapses to an extent that allows passage through some nanofilters. Manufacturers should be aware that protein contaminants in other nanofiltered protein drugs could behave similarly and conditions of nanofiltration must be evaluated to ensure consistent product purity.  相似文献   
54.
We tested the hypothesis that changing the gut microbiota using pectic oligosaccharides (POS) or inulin (INU) differently modulates the progression of leukemia and related metabolic disorders. Mice were transplanted with Bcr-Abl-transfected proB lymphocytes mimicking leukemia and received either POS or INU in their diet (5%) for 2 weeks. Combination of pyrosequencing, PCR-DGGE and qPCR analyses of the 16S rRNA gene revealed that POS decreased microbial diversity and richness of caecal microbiota whereas it increased Bifidobacterium spp., Roseburia spp. and Bacteroides spp. (affecting specifically B. dorei) to a higher extent than INU. INU supplementation increased the portal SCFA propionate and butyrate, and decreased cancer cell invasion in the liver. POS treatment did not affect hepatic cancer cell invasion, but was more efficient than INU to decrease the metabolic alterations. Indeed, POS better than INU delayed anorexia linked to cancer progression. In addition, POS treatment increased acetate in the caecal content, changed the fatty acid profile inside adipose tissue and counteracted the induction of markers controlling β-oxidation, thereby hampering fat mass loss. Non digestible carbohydrates with prebiotic properties may constitute a new nutritional strategy to modulate gut microbiota with positive consequences on cancer progression and associated cachexia.  相似文献   
55.
56.
Abscisic acid (ABA), auxins, and cytokinins (CKs) are known to be closely linked to nitrogen signaling. In particular, CKs control the effects of nitrate availability on plant growth. Our group has shown that treatment with high nitrate concentrations limits root growth and leaf development in maize, and conditions the development of younger roots and leaves. CKs also affect source-sink relationships in plants. Based on these results, we hypothesized that CKs regulate the source-sink relationship in maize via a mechanism involving complex crosstalk with the main auxin indole-3-acetic acid (IAA) and ABA. To evaluate this hypothesis, various CK metabolites, IAA, and ABA were quantified in the roots and in source and sink leaves of maize plants treated with high and normal nitrate concentrations. The data obtained suggest that the cis and trans isomers of zeatin play completely distinct roles in maize growth regulation by a complex crosstalk with IAA and ABA. We demonstrate that while trans-zeatin (tZ) and isopentenyladenine (iP) regulate nitrate uptake and thus control final leaf sizes, cis-zeatin (cZ) regulates source and sink strength, and thus controls leaf development. The implications of these findings relating to the roles of ABA and IAA in plants’ responses to varying nitrate concentrations are also discussed.  相似文献   
57.
58.
Species- and group-specific PCR primers were developed to study predation on pest and nonpest invertebrate species by generalist carabid predators in agroecosystems. To ensure the amplification of degraded DNA in predator gut samples, amplicons were designed to be less than 300 bp. Specificity of primers was assessed by cross-amplification against a panel of target and nontarget invertebrate species. The new primers were combined with previously published primers for slugs and collembolla in multiplex reactions to simultaneously screen each predator for the presence of multiple prey. All prey species were detected in a screen of the gut contents of field-caught predators.  相似文献   
59.
Nucleotide-binding domain and leucine-rich repeat containing (NLR) family are intracellular sentinels of cytosolic homeostasis that orchestrate immune and inflammatory responses in infectious and immune-mediated diseases. NLRX1 is a mitochondrial-associated NOD-like receptor involved in the modulation of immune and metabolic responses. This study utilizes molecular docking approaches to investigate the structure of NLRX1 and experimentally assesses binding to naturally occurring compounds from several natural product and lipid databases. Screening of compound libraries predicts targeting of NLRX1 by conjugated trienes, polyketides, prenol lipids, sterol lipids, and coenzyme A-containing fatty acids for activating the NLRX1 pathway. The ligands of NLRX1 were identified by docking punicic acid (PUA), eleostearic acid (ESA), and docosahexaenoic acid (DHA) to the C-terminal fragment of the human NLRX1 (cNLRX1). Their binding and that of positive control RNA to cNLRX1 were experimentally determined by surface plasmon resonance (SPR) spectroscopy. In addition, the ligand binding sites of cNLRX1 were predicted in silico and validated experimentally. Target mutagenesis studies demonstrate that mutation of 4 critical residues ASP677, PHE680, PHE681, and GLU684 to alanine resulted in diminished affinity of PUA, ESA, and DHA to NLRX1. Consistent with the regulatory actions of NLRX1 on the NF-κB pathway, treatment of bone marrow derived macrophages (BMDM)s with PUA and DHA suppressed NF-κB activity in a NLRX1 dependent mechanism. In addition, a series of pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the regulatory function of PUA on colitis is NLRX1 dependent. Thus, we identified novel small molecules that bind to NLRX1 and exert anti-inflammatory actions.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号