首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   3篇
  2023年   3篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   14篇
  2015年   10篇
  2014年   17篇
  2013年   11篇
  2012年   16篇
  2011年   12篇
  2010年   11篇
  2009年   6篇
  2008年   11篇
  2007年   6篇
  2006年   10篇
  2005年   3篇
  2004年   10篇
  2003年   9篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
41.
Since C. dubliniensis is similar to C. albicans phenotypically, it can be misidentified as C. albicans. We aimed to investigate the prevalence of C. dubliniensis among isolates previously identified as C. albicans in our stocks and to compare the phenotypic methods and DNA sequencing of D1/D2 region on the ribosomal large subunit (rLSU) gene. A total of 850 isolates included in this study. Phenotypic identification was performed based on germ tube formation, chlamydospore production, colony colors on chromogenic agar, inability of growth at 45 °C and growth on hypertonic Sabouraud dextrose agar. Eighty isolates compatible with C. dubliniensis by at least one phenotypic test were included in the sequence analysis. Nested PCR amplification of D1/D2 region of the rLSU gene was performed after the fungal DNA extraction by Whatman FTA filter paper technology. The sequencing analysis of PCR products carried out by an automated capillary gel electrophoresis device. The rate of C. dubliniensis was 2.35 % (n = 20) among isolates previously described as C. albicans. Consequently, none of the phenotypic tests provided satisfactory performance alone in our study, and molecular methods required special equipment and high cost. Thus, at least two phenotypic methods can be used for identification of C. dubliniensis, and molecular methods can be used for confirmation.  相似文献   
42.
Synthetic linear antimicrobial peptides with cationic α‐helical structures, such as BP100, are valuable as novel therapeutics and preservatives. However, they tend to be toxic when expressed at high levels as recombinant peptides in plants, and they can be difficult to detect and isolate from complex plant tissues because they are strongly cationic and display low extinction coefficient and extremely limited immunogenicity. We therefore expressed BP100 with a C‐terminal tag which preserved its antimicrobial activity and demonstrated significant accumulation in plant cells. We used a fluorescent tag to trace BP100 following transiently expression in Nicotiana benthamiana leaves and showed that it accumulated in large vesicles derived from the endoplasmic reticulum (ER) along with typical ER luminal proteins. Interestingly, the formation of these vesicles was induced by BP100. Similar vesicles formed in stably transformed Arabidopsis thaliana seedlings, but the recombinant peptide was toxic to the host during latter developmental stages. This was avoided by selecting active BP100 derivatives based on their low haemolytic activity even though the selected peptides remained toxic to plant cells when applied exogenously at high doses. Using this strategy, we generated transgenic rice lines producing active BP100 derivatives with a yield of up to 0.5% total soluble protein.  相似文献   
43.
Forty-two patients with lung cancer and 72 healthy subjects were studied in order to determine a possible relationship between serum zinc and angiotensin-converting enzyme (ACE), a peptidyl dipeptide hydrolase. Serum zinc levels were 105 +/- 21 micrograms/dl in control subjects and 50 +/- 19 micrograms/dl in patients, and angiotensin-converting enzyme activity was 296 +/- 28 U/l in the former and 240 +/- 55 U/l in the latter using hippurylglycylglycine as a substrate. The findings obtained show that the decreased levels of angiotensin-converting enzyme may be related to decreased serum zinc levels and that the primary defect may be the zinc deficiency in these patients.  相似文献   
44.
The present study was designed to investigate and compare the effects of dietary selenium (Se) and vitamin E on some physiological parameters and histological changes in liver, heart, and skin tissues, as well as the blood parameters and the related enzymes. Both sex young rabbits were fed with deficient (9.8 μg/kg diet), adequate (225 μg/kg diet), and rich (4.2 mg/kg diet) Se and vitamin E diets for 12–15 wk for this purpose. As the plasma Se levels and the erythrocyte glutathione (GSH) peroxidase activity decreased (79.8±9.4 ng/ml and 2.0±0.3 U/g Hb, respectively) in the deficient group, these values increased (100.4±2.7 ng/mL and 14.5±4.3 U/g Hb) in the rich group significantly with respect to the control group. The other antioxidant enzyme activities and the related element levels did not change significantly in either one of the experimental groups. Although the platelet counts of the two experimental groups were not different from the control values, the collagen and the adenosine diphosphate (ADP) stimulated platelet aggregation rate and intensity increased in the deficient group (p<0.05) and decreased very significantly (p<0.001) in the rich group. In both of the experimental groups, as the percentage values of the neutrophils decreased, the lymphocytes and the eosinophils increased significantly. According to the light microscopic investigations, the observed lesions of considerable intensity within the tissues that elicit cell degenerations were more pronounced in the animals fed with the rich diet than in those fed with the deficient diet. The deficiency as well as toxicity of Se and the deficiency of vitamin E caused several alterations in the physiological functions of the tissues, and these alterations were supported by the histological lesions within these tissues.  相似文献   
45.

Purpose

Quantitative life cycle sustainable assessment requires a complex and multidimensional understanding, which cannot be fully covered by the current portfolio of reductionist-oriented tools. Therefore, there is a dire need on a new generation of modeling tools and approaches that can quantitatively assess the economic, social, and environmental dimensions of sustainability in an integrated way. To this end, this research aims to present a practical and novel approach for (1) broadening the existing life cycle sustainability assessment (LCSA) framework by considering macrolevel environmental, economic, and social impacts (termed as the triple bottom line), simultaneously, (2) deepening the existing LCSA framework by capturing the complex dynamic relationships between social, environmental, and economic indicators through causal loop modeling, (3) understanding the dynamic complexity of transportation sustainability for the triple bottom line impacts of alternative vehicles, and finally (4) investigating the impacts of various vehicle-specific scenarios as a novel approach for selection of a macrolevel functional unit considering all of the complex interactions in the environmental, social, and economic aspects.

Methods

To alleviate these research objectives, we presented a novel methodology to quantify macrolevel social, economic, and environmental impacts of passenger vehicles from an integrated system analysis perspective. An integrated dynamic LCSA model is utilized to analyze the environmental, economic, and social life cycle impact as well as life cycle cost of alternative vehicles in the USA. System dynamics modeling is developed to simulate the US passenger transportation system and its interactions with economy, the environment, and society. Analysis covers manufacturing and operation phase impacts of internal combustion vehicles (ICVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). In total, seven macrolevel indicators are selected; global warming potential, particulate matter formation, photochemical oxidant formation, vehicle ownership cost, contribution to gross domestic product, employment generation, and human health impacts. Additionally, contribution of vehicle choices to global atmospheric temperature rise and public welfare is investigated.

Results and discussion

BEVs are found to be a better alternative for most of sustainability impact categories. While some of the benefits such as contribution to employment and GDP, CO2 emission reduction potential of BEVs become greater toward 2050, other sustainability indicators including vehicle ownership cost and human health impacts of BEVs are higher than the other vehicle types on 2010s and 2020s. While the impact shares of manufacturing and operation phases are similar in the early years of 2010s, the contribution of manufacturing phase becomes higher as the vehicle performances increase toward 2050. Analysis results revealed that the US transportation sector, alone, cannot reduce the rapidly increasing atmospheric temperature and the negative impacts of the global climate change, even though the entire fleet is replaced with BEVs. Reducing the atmospheric climate change requires much more ambitious targets and international collaborative efforts. The use of different vehicle types has a small impact on public welfare, which is a function of income, education, and life expectancy indexes.

Conclusions

The authors strongly recommend that the dynamic complex and mutual interactions between sustainability indicators should be considered for the future LCSA framework. This approach will be critical to deepen the existing LCSA framework and to go beyond the current LCSA understanding, which provide a snapshot analysis with an isolated view of all pillars of sustainability. Overall, this research is a first empirical study and an important attempt toward developing integrated and dynamic LCSA framework for sustainable transportation research.
  相似文献   
46.

Background

Bovine respiratory disease is one of the main health issues in dairy calves. Inflammatory lung diseases are highly complex with respect to pathogenesis and relationships between inflammation, clinical disease and response to treatment. Metabolomics may offer the potential to identify biomarkers that define calf bronchopneumonia in terms of combined clinical, physiological and patho-biological abnormalities. While metabolomic studies are often encountered in childhood pneumonia, there is no knowledge related to the same approach to calf pneumonia.

Objective

The aim of this first study was to reveal the new potential biomarkers for acute calf bronchopneumonia by single proton (1H) Nuclear magnetic resonance (NMR) based quantitative metabolomics.

Methods

Fifty dairy calves with acute bronchopneumonia presented for treatment to the teaching hospital, and ten healthy dairy calves belonging the teaching farm were used. Laboratory (hematological: complete blood count and blood gas analysis, and biochemical analysis related to health profile) were performed. NMR spectra of the all samples (50 diseased + 10 healthy water soluble extracts, 50 diseased + 10 healthy lipid extracts) were acquired using a standard Nuclear Overhauser Effect Spectroscopy pulse sequence.

Results

NMR based metabolomics analysis showed that calves suffering from bronchopneumonia and healthy calves have two different and distinguishable metabolic fingerprints using both water soluble and lipid extracts. Alterations in metabolites, increases in 2-methyl glutarate, phenylalanine, phosphatidylcholine, and decreases in ethanol, dimethylsulfone, propionate, acetate, allantoin, free cholesterol, cholesterol (–C18), were meaningful for pathogenic mechanisms of calf bronchopneumonia.

Conclusion

The NMR based metabolomics may contribute to better understanding bronchopneumonia in calves.
  相似文献   
47.
Forty-eight male lambs were used to evaluate the effect of dietary supplementation of mannanoligosaccharide (MOS) with or without parenteral Escherichia coli injection on their growth performance, feed conversion efficiency, blood metabolites, total serum immunoglobulin G (IgG) levels and antibody response. Lambs were randomly assigned to four groups of 12 animals each. In groups C (control) and CE (E. coli challenged), animals were fed commercial concentrate pellets and hay (50:50), and in groups M (MOS) and ME (MOS + E. coli challenged), animals were fed commercial concentrate pellets including MOS at 0.2% and hay (50:50). At day 15 and 30, animals in groups CE and ME were injected subcutaneously with 1 ml of phosphate buffered saline (PBS) suspension containing 10(6) cfu of heat inactivated non-toxigenic E. coli O157:H7, while animals in C and M groups were injected subcutaneously with 1 ml of PBS. The experimental period was 45 days. Data indicated that body weight of lambs at the end of the study were statistically non-significant among the groups. Blood metabolites, i.e. total protein, albumin, calcium and phosphorus concentrations were not affected significantly by MOS supplementation. However, administration E. coli lowered (p < 0.05) total protein, albumin and calcium concentrations in the serum on day 30. The IgG level was not different between groups. However, on day 45, the total IgG level was found to be higher (p < 0.05) in lambs that had received MOS and E. coli than in other groups. Application of MOS did not have any effect on the antibody response to E. coli as OD values.  相似文献   
48.
Tissue injury following ischemia-reperfusion (I/R) occurs as a consequence of actions of soluble factors and immune cells. Growing evidence supports a role for platelets in the manifestation of tissue damage following I/R. Spleen tyrosine kinase has been well documented to be important in lymphocyte activation and more recently in platelet activation. We performed experiments to evaluate whether inhibition of platelet activation through inhibition of spleen tyrosine kinase prevents tissue damage after mesenteric I/R injury. Platelets isolated from C57BL/6J mice fed with R788 for 10 days were transfused into C57BL/6J mice depleted of platelets 2 days before mesenteric I/R injury. Platelet-depleted mice transfused with platelets from R788-treated mice before mesenteric I/R displayed a significant reduction in the degree of remote lung damage, but with little change in the degree of local intestinal damage compared with control I/R mice. Transfusion of R788-treated platelets also decreased platelet sequestration, C3 deposition, and immunoglobulin deposition in lung, but not in the intestine, compared with control groups. These findings demonstrate that platelet activation is a requisite for sequestration in the pulmonary vasculature to mediate remote tissue injury after mesenteric I/R. The use of small-molecule inhibitors may be valuable to prevent tissue damage in remote organs following I/R injury.  相似文献   
49.
Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle   总被引:1,自引:0,他引:1  
The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.  相似文献   
50.
Cisplatin is one of the most active cytotoxic agents in the treatment of cancer. High doses of cisplatin have also been known to produce hepatotoxicity. Several studies suggest that supplementation with an antioxidant can influence cisplatin-induced hepatotoxicity. The present study was designed to determine the effects of cisplatin on the liver oxidant/antioxidant system, and the possible protective effects of caffeic acid phenethyl ester (CAPE) on liver toxicity induced by cisplatin. Twenty-four adult female Wistar albino rats were divided into four groups of six rats each: control, cisplatin, CAPE, and cisplatin+CAPE. Cisplatin and CAPE were injected intraperitoneally. Liver tissue was removed to study the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), myeloperoxidase (MPO), xanthine oxidase (XO), adenosine deaminase (ADA), and the levels of malondialdehyde and nitric oxide (NO). The activities of SOD and GSH-Px increased in the cisplatin+CAPE and CAPE groups compared with the cisplatin group. CAT activity was higher in the cisplatin +CAPE group than the other three groups. XO activity was lower in the cisplatin group than the control group. MPO activity was also increased in the cisplatin group compared to the control and CAPE groups. It can be concluded that CAPE may prevent cisplatin-induced oxidative changes in liver by strengthening the antioxidant defence system by reducing reactive oxygen species and increasing antioxidant enzyme activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号