首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2658篇
  免费   222篇
  国内免费   1篇
  2022年   25篇
  2021年   56篇
  2020年   28篇
  2019年   39篇
  2018年   56篇
  2017年   48篇
  2016年   79篇
  2015年   92篇
  2014年   118篇
  2013年   154篇
  2012年   185篇
  2011年   162篇
  2010年   97篇
  2009年   105篇
  2008年   120篇
  2007年   106篇
  2006年   96篇
  2005年   86篇
  2004年   91篇
  2003年   64篇
  2002年   75篇
  2001年   64篇
  2000年   59篇
  1999年   47篇
  1998年   19篇
  1997年   28篇
  1996年   21篇
  1993年   18篇
  1992年   54篇
  1991年   27篇
  1990年   30篇
  1989年   29篇
  1988年   40篇
  1987年   31篇
  1986年   27篇
  1985年   48篇
  1984年   27篇
  1983年   34篇
  1982年   19篇
  1981年   30篇
  1980年   20篇
  1979年   31篇
  1978年   30篇
  1977年   21篇
  1976年   19篇
  1975年   29篇
  1974年   16篇
  1973年   23篇
  1972年   22篇
  1971年   19篇
排序方式: 共有2881条查询结果,搜索用时 31 毫秒
941.
Type 2 diabetes mellitus (T2DM) is a metabolic pro-inflammatory disorder characterized by chronic hyperglycemia and increased levels of circulating cytokines suggesting a causal role of inflammation in its etiology. Polymorphism of cytokine genes including interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were studied in T2DM patients as well as in normal healthy controls. Genomic DNA was isolated from both T2DM patients and controls followed by quantification and genotyping by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) using suitable primers. The genotypic, allelic and carriage rate frequency distribution in patients and controls were analyzed by SPSS (version 15.0). Odd ratios with 95 % confidence interval was determined to describe the strength of association by logistic regression model. Double and triple combinations of genotypes were analyzed by χ2 test. Gene–gene interaction and linkage disequilibrium tests were performed using SHEsis software. Individually, IL-6, TNF-α and IL-10 did not show any association. In double combination, IL-6 ?597 GA and TNF-α ?308 GG genotypes increased the risk up to 21 times and in triple combination IL-6 ?597 AA, TNF-α ?308 GG and IL-10 ?592 CA increased the risk of T2DM up to 314 times. In gene–gene interaction allele ‘A’ of all studied polymorphisms increased the risk of T2DM up to 1.41 times. Our results suggest that individuals having a haplotype combination of AA, GG and CA for IL-6, TNF-α and IL-10 gene polymorphisms will have higher susceptibility and be at greater risk of developing T2DM.  相似文献   
942.
The aim of this study was to investigate the effects of Raloxifene (Ral) on degeneration-related changes in osteoarthritis (OA)-like chondrocytes using two- and three-dimensional models. Five-azacytidine (Aza-C) was used to induce OA-like alterations in rat articular chondrocytes and the model was verified at molecular and macrolevels. Chondrocytes were treated with Ral (1, 5 and 10 μM) for 10 days. Caspase-3 activity, gene expressions of aggrecan, collagen II, alkaline phosphatase (ALP), collagen X, matrix metalloproteinases (MMP-13, MMP-3 and MMP-2), and MMP-13, MMP-3 and MMP-2 protein expressions were studied in two-dimensional model. Matrix deposition and mechanical properties of agarose-chondrocyte discs were evaluated in three-dimensional model. One μM Ral reduced expression of OA-related genes, decreased apoptosis, and MMP-13 and MMP-3 protein expressions. It also increased aggrecan and collagen II gene expressions relative to untreated OA-like chondrocytes. In three-dimensional model, 1 μM Ral treatment resulted in increased collagen deposition and improved mechanical properties, although a significant increase for sGAG was not observed. In summation, 1 μM Ral improved matrix-related activities, whereas dose increment reversed these effects except ALP gene expression and sGAG deposition. These results provide evidence that low-dose Ral has the potential to cease or reduce the matrix degeneration in OA.  相似文献   
943.
Abstract

Most fibrous polynucleotides of general sequence exhibit secondary structures that are described adequately by regular helices with a repeated motif of only one nucleotide. Such helices exploit the fact that A:T, T:A, G:C, and C:G pairs are essentially isomorphous and have dyadically-related glycosylic bonds. Polynucleotides with regularly repeated base-sequences sometimes assume secondary structures with larger repeated motifs which reflect these base-sequences. The dinucleotide units of the Z-like forms of poly d(As4T):poly d(As4T), poly d(AC):poly d(GT) and poly d(GC):poly d(GC) are dramatic instances of this phenomenon. The wrinkled B and D forms of poly d(GC):poly d(GC) and poly d(AT):poly d(AT) are just as significant but more subtle examples. It is possible also to trap more exotic secondary structures in which the molecular asymmetric unit is even larger. There is, for example, a tetragonal form of poly d(AT):poly d(AT) which has unit cell dimensions a = b = 1.71nm, c= 7.40nm, γ = 90°. The C dimension corresponds to the pitch of a molecular helix which accommodates 24 successive nucleotide pairs arranged as a 43 helix of hexanucleotide duplexes. The great variety of nucleotide conformations which occur in these large asymmetric units has prompted us to describe them as pleiomeric, a term used in botany to describe whorls having more than the usual number of structures. Pleiomeric DNAs need not contain nucleotide conformations that are very different from one another. On the other hand, DNAs carrying nucleotides of very different conformation must be pleiomeric. This is because 4 nucleotides of different conformation are needed to join patches of secondary structure which are as different as A or B or Z. Differences in nucleotide structures may occur also between chains rather than within chains. In poly d(A):poly d(T), the purine nucleotides all contain Ci'-endo furanose rings and the pyrimidine nucleotides C2 '-endo rings. Analogous heteronomous structures may exist in DNA-RNA hybrids although these duplexes are also found to have symmetrical A-type conformations.  相似文献   
944.
Myeloperoxidase (MPO) is a lysosomal heme enzyme present in the azurophilic granules of human neutrophils and monocytes. It is a critical element of the human innate immune system by exerting antimicrobial effects. It is a disulfide bridged dimer with each monomer containing a light and a heavy polypeptide and its biosynthesis and intracellular transport includes several posttranslational processing steps. By contrast, MPO recombinantly produced in Chinese hamster ovary cell lines is monomeric, partially unprocessed and contains a N-terminal propeptide (proMPO). It mirrors a second form of MPO constitutively secreted from normal bone marrow myeloid precursors. In order to clarify the impact of posttranslational modifications on the structural integrity and enzymology of these two forms of human myeloperoxidase, we have undertaken an investigation on the conformational and thermal stability of leukocyte MPO and recombinant proMPO by using complementary biophysical techniques including UV-Vis, circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Mature leucocyte MPO exhibits a peculiar high chemical and thermal stability under oxidizing conditions but is significantly destabilized by addition of dithiothreitol. Unfolding of secondary and tertiary structure occurs concomitantly with denaturation of the heme cavity, reflecting the role of three MPO-typical heme to protein linkages and of six intra-chain disulfides for structural integrity by bridging N- and C-terminal regions of the protein. Recombinant monomeric proMPO follows a similar unfolding pattern but has a lower conformational and thermal stability. Spectroscopic and thermodynamic data of unfolding are discussed with respect to the known three-dimensional structure of leukocyte MPO as well as to known physiological roles.  相似文献   
945.
Lofgren M  Banerjee R 《Biochemistry》2011,50(25):5790-5798
ATP-dependent cob(I)alamin adenosyltransferase (ATR) is a bifunctional protein: an enzyme that catalyzes the adenosylation of cob(I)alamin and an escort that delivers the product, adenosylcobalamin (AdoCbl or coenzyme B(12)), to methylmalonyl-CoA mutase (MCM), resulting in holoenzyme formation. Failure to assemble holo-MCM leads to methylmalonic aciduria. We have previously demonstrated that only 2 equiv of AdoCbl bind per homotrimer of ATR and that binding of ATP to the vacant active site triggers ejection of 1 equiv of AdoCbl from an adjacent site. In this study, we have mimicked in the Methylobacterium extorquens ATR, a C-terminal truncation mutation, D180X, described in a patient with methylmalonic aciduria, and characterized the associated biochemical penalties. We demonstrate that while k(cat) and K(M)(Cob(I)) for D180X ATR are only modestly decreased (by 3- and 2-fold, respectively), affinity for the product, AdoCbl, is significantly diminished (400-fold), and the negative cooperativity associated with its binding is lost. We also demonstrate that the D180X mutation corrupts ATP-dependent cofactor ejection, which leads to transfer of AdoCbl from wild-type ATR to MCM. These results suggest that the pathogenicity of the corresponding human truncation mutant results from its inability to sequester AdoCbl for direct transfer to MCM. Instead, cofactor release into solution is predicted to reduce the capacity for holo-MCM formation, leading to disease.  相似文献   
946.
Pancreatic cancer (PC) is one of the most lethal malignant diseases with the worst prognosis. It is ranked as the fourth leading cause of cancer-related deaths in the United States. Many risk factors have been associated with PC. Interestingly, large numbers of epidemiological studies suggest that obesity and diabetes, especially type-2 diabetes, are positively associated with increased risk of PC. Similarly, these chronic diseases (obesity, diabetes, and cancer) are also a major public health concern. In the U.S. population, 50 percent are overweight, 30 percent are medically obese, and 10 percent have diabetes mellitus (DM). Therefore, obesity and DM have been considered as potential risk factors for cancers; however, the focus of this article is restricted to PC. Although the mechanisms responsible for the development of these chronic diseases leading to the development of PC are not fully understood, the biological importance of the activation of insulin, insulin like growth factor-1 (IGF-1) and its receptor (IGF-1R) signaling pathways in insulin resistance mechanism and subsequent induction of compensatory hyperinsulinemia has been proposed. Therefore, targeting insulin/IGF-1 signaling with anti-diabetic drugs for lowering blood insulin levels and reversal of insulin resistance could be useful strategy for the prevention and/or treatment of PC. A large number of studies have demonstrated that the administration of anti-diabetic drugs such as metformin and thiazolidinediones (TZD) class of PPAR-γ agonists decreases the risk of cancers, suggesting that these agents might be useful anti-tumor agents for the treatment of PC. In this review article, we will discuss the potential roles of metformin and TZD anti-diabetic drugs as anti-tumor agents in the context of PC and will further discuss the complexities and the possible roles of microRNAs (miRNAs) in the pathogenesis of obesity, diabetes, and PC.  相似文献   
947.
948.
Meckel syndrome (MKS) is a pre‐ or perinatal multisystemic ciliopathic lethal disorder with an autosomal recessive mode of inheritance. Meckel syndrome is usually manifested with meningo‐occipital encephalocele, polycystic kidney dysplasia, postaxial polydactyly and hepatobiliary ductal plate malformation. Germline variants in CEP290 cause MKS4. In this study, we investigated a 35‐years‐old Chinese female who was 17+1 weeks pregnant. She had a history of adverse pregnancy of having foetus with multiple malformations. We performed ultrasonography and identified the foetus with occipital meningoencephalocele and enlarged cystic dysplastic kidneys. So, she decided to terminate her pregnancy and further genetic molecular analysis was performed. We identified the aborted foetus without postaxial polydactyly. Histological examination of foetal kidney showed cysts in kidney and thinning of the renal cortex with glomerular atrophy. Whole exome sequencing identified a novel homozygous variant (c.2144T>G; p.L715*) in exon 21 of the CEP290 in the foetus. Sanger sequencing confirmed that both the parents of the foetus were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters of the foetus as well as in the 100 healthy individuals. Western blot analysis showed that this variant leads to the formation of truncated CEP290 protein with the molecular weight of 84 KD compared with the wild‐type CEP290 protein of 290 KD. Hence, it is a loss‐of‐function variant. We also found that the mutant cilium appears longer in length than the wild‐type cilium. Our present study reported the first variant of CEP290 associated with MKS4 in Chinese population.  相似文献   
949.
Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications.  相似文献   
950.
Genomic aberrations are common in cancers and the long arm of chromosome 1 is known for its frequent amplifications in breast cancer. However, the key candidate genes of 1q, and their contribution in breast cancer pathogenesis remain unexplored. We have analyzed the gene expression profiles of 1635 breast tumor samples using meta-analysis based approach and identified clinically significant candidates from chromosome 1q. Seven candidate genes including exonuclease 1 (EXO1) are consistently over expressed in breast tumors, specifically in high grade and aggressive breast tumors with poor clinical outcome. We derived a EXO1 co-expression module from the mRNA profiles of breast tumors which comprises 1q candidate genes and their co-expressed genes. By integrative functional genomics investigation, we identified the involvement of EGFR, RAS, PI3K / AKT, MYC, E2F signaling in the regulation of these selected 1q genes in breast tumors and breast cancer cell lines. Expression of EXO1 module was found as indicative of elevated cell proliferation, genomic instability, activated RAS/AKT/MYC/E2F1 signaling pathways and loss of p53 activity in breast tumors. mRNA–drug connectivity analysis indicates inhibition of RAS/PI3K as a possible targeted therapeutic approach for the patients with activated EXO1 module in breast tumors. Thus, we identified seven 1q candidate genes strongly associated with the poor survival of breast cancer patients and identified the possibility of targeting them with EGFR/RAS/PI3K inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号