首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10230篇
  免费   790篇
  国内免费   2篇
  2024年   4篇
  2023年   69篇
  2022年   94篇
  2021年   257篇
  2020年   190篇
  2019年   210篇
  2018年   276篇
  2017年   268篇
  2016年   406篇
  2015年   579篇
  2014年   602篇
  2013年   767篇
  2012年   941篇
  2011年   796篇
  2010年   543篇
  2009年   491篇
  2008年   590篇
  2007年   624篇
  2006年   542篇
  2005年   470篇
  2004年   444篇
  2003年   376篇
  2002年   371篇
  2001年   133篇
  2000年   101篇
  1999年   96篇
  1998年   92篇
  1997年   75篇
  1996年   57篇
  1995年   66篇
  1994年   55篇
  1993年   46篇
  1992年   48篇
  1991年   48篇
  1990年   25篇
  1989年   36篇
  1988年   38篇
  1987年   21篇
  1986年   23篇
  1985年   16篇
  1984年   15篇
  1983年   16篇
  1982年   17篇
  1981年   16篇
  1980年   6篇
  1979年   8篇
  1978年   10篇
  1975年   5篇
  1974年   10篇
  1968年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
Based on experimental work on the ontogeny of the electroretinogram circadian rhythm in crayfish, we present a mathematical model simulating changes in both frequency and amplitude of the electroretinogram oscillation during several developmental stages until shortly before the adult age. Simultaneously, we propose a hypothetical oscillation in the hormonal release whose frequency is imposed on the electroretinogram oscillation. The model consists of two coupled nonlinear oscillators in which a dynamical response is obtained mainly through an Andronov-Hopf bifurcation. Through the construction of the model, a biological hypothesis about the essential elements underlying the ERG circadian rhythm and their interrelations is formulated and discussed.  相似文献   
72.
In the budding yeast Saccharomyces cerevisiae, progress of the cell cycle beyond the major control point in G1 phase, termed START, requires activation of the evolutionarily conserved Cdc28 protein kinase by direct association with GI cyclins. We have used a conditional lethal mutation in CDC28 of S. cerevisiae to clone a functional homologue from the human fungal pathogen Candida albicans. The protein sequence, deduced from the nucleotide sequence, is 79% identical to that of S. cerevisiae Cdc28 and as such is the most closely related protein yet identified. We have also isolated from C. albicans two genes encoding putative G1 cyclins, by their ability to rescue a conditional GI cyclin defect in S. cerevisiae; one of these genes encodes a protein of 697 amino acids and is identical to the product of the previously described CCN1 gene. The second gene codes for a protein of 465 residues, which has significant homology to S. cerevisiae Cln3. These data suggest that the events and regulatory mechanisms operating at START are highly conserved between these two organisms.  相似文献   
73.
A mesocosm experiment was conducted to assess the impact of moderate silver carp (Hypophthalmichthys molitrix) biomass (41 g m–3 or 850 kg ha–1) on the plankton community and water quality of eutrophic Paranoá Reservoir (Brasília, Brazil). Microzooplankton (copepod nauplii and rotifers <200 m), netphytoplankton (> 20 m), total phytoplankton biomass (expressed as chlorophyll-a) and net primary productivity were significantly reduced by silver carp. Apart from increased nitrogen in the sediment, nutrients and chemical properties of the water were not affected by fish presence. The observed improvements in water quality suggest that stocking silver carp in Paranoá Reservoir to control blue-green algae is a promising biomanipulation practice.  相似文献   
74.
Journal of Physiology and Biochemistry - We have investigated the effects of melatonin on major pathways related with cellular proliferation and energetic metabolism in pancreatic stellate cells....  相似文献   
75.
Soil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Here, we analyzed >1300 topsoil samples to examine the global distribution of six metallic micronutrients (Cu, Fe, Mn, Zn, Co and Ni) across all continents, climates and vegetation types. We found that warmer arid and tropical ecosystems, present in the least developed countries, sustain the lowest contents of multiple soil micronutrients. We further provide evidence that temperature increases may potentially result in abrupt and simultaneous reductions in the content of multiple soil micronutrients when a temperature threshold of 12–14°C is crossed, which may be occurring on 3% of the planet over the next century. Altogether, our findings provide fundamental understanding of the global distribution of soil micronutrients, with direct implications for the maintenance of ecosystem functioning, rangeland management and food production in the warmest and poorest regions of the planet.  相似文献   
76.
The western Antarctic Peninsula (WAP) is a climatically sensitive region where foundational changes at the basis of the food web have been recorded; cryptophytes are gradually outgrowing diatoms together with a decreased size spectrum of the phytoplankton community. Based on a 11-year (2008–2018) in-situ dataset, we demonstrate a strong coupling between biomass accumulation of cryptophytes, summer upper ocean stability, and the mixed layer depth. Our results shed light on the environmental conditions favoring the cryptophyte success in coastal regions of the WAP, especially during situations of shallower mixed layers associated with lower diatom biomass, which evidences a clear competition or niche segregation between diatoms and cryptophytes. We also unravel the cryptophyte photo-physiological niche by exploring its capacity to thrive under high light stress normally found in confined stratified upper layers. Such conditions are becoming more frequent in the Antarctic coastal waters and will likely have significant future implications at various levels of the marine food web. The competitive advantage of cryptophytes in environments with significant light level fluctuations was supported by laboratory experiments that revealed a high flexibility of cryptophytes to grow in different light conditions driven by a fast photo-regulating response. All tested physiological parameters support the hypothesis that cryptophytes are highly flexible regarding their growing light conditions and extremely efficient in rapidly photo-regulating changes to environmental light levels. This plasticity would give them a competitive advantage in exploiting an ecological niche where light levels fluctuate quickly. These findings provide new insights on niche separation between diatoms and cryptophytes, which is vital for a thorough understanding of the WAP marine ecosystem.  相似文献   
77.
Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two–three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.  相似文献   
78.
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.  相似文献   
79.
80.
Under temperature sex determination (TSD), sex is determined by temperature during embryonic development. Depending on ecological and physiological traits and plasticity, TSD species may face demographic collapse due to climate change. In this context, asymmetry in bilateral organisms can be used as a proxy for developmental instability and, therefore, deviations from optimal incubation conditions. Using Tarentola mauritanica gecko as a model, this study aimed first to confirm TSD, its pattern and pivotal temperature, and second to assess the local adaptation of TSD and variation of asymmetry patterns across four populations under different thermal regimes. Eggs were incubated at different temperatures, and hatchlings were sexed and measured. The number of lamellae was counted in adults and hatchlings. Results were compatible with a TSD pattern with males generated at low and females at high incubation temperatures. Estimated pivotal temperature coincided with the temperature producing lower embryonic mortality, evidencing selection towards balanced sex ratios. The temperature of oviposition was conservatively selected by gravid females. Asymmetry patterns found were likely related to nest temperature fluctuations. Overall, the rigidity of TSD may compromise reproductive success, and demographic stability in this species in case thermal nest choice becomes constrained by climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号