首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   28篇
  2021年   6篇
  2019年   3篇
  2016年   4篇
  2015年   14篇
  2014年   13篇
  2013年   7篇
  2012年   10篇
  2011年   10篇
  2010年   16篇
  2009年   10篇
  2008年   17篇
  2007年   7篇
  2006年   12篇
  2005年   7篇
  2004年   10篇
  2003年   5篇
  2002年   4篇
  2001年   11篇
  2000年   5篇
  1999年   13篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   8篇
  1991年   15篇
  1990年   8篇
  1989年   17篇
  1988年   8篇
  1987年   4篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   10篇
  1980年   6篇
  1979年   14篇
  1978年   9篇
  1977年   9篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
  1973年   8篇
  1972年   6篇
  1971年   6篇
  1969年   3篇
  1966年   4篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
81.
Mlh1 is an essential factor of mismatch repair (MMR) and meiotic recombination. It interacts through its C-terminal region with MutL homologs and proteins involved in DNA repair and replication. In this study, we identified the site of yeast Mlh1 critical for the interaction with Exo1, Ntg2, and Sgs1 proteins, designated as site S2 by reference to the Mlh1/Pms1 heterodimerization site S1. We show that site S2 is also involved in the interaction between human MLH1 and EXO1 or BLM. Binding at this site involves a common motif on Mlh1 partners that we called the MIP-box for the Mlh1 interacting protein box. Direct and specific interactions between yeast Mlh1 and peptides derived from Exo1, Ntg2, and Sgs1 and between human MLH1 and peptide derived from EXO1 and BLM were measured with Kd values ranging from 8.1 to 17.4 μM. In Saccharomyces cerevisiae, a mutant of Mlh1 targeted at site S2 (Mlh1-E682A) behaves as a hypomorphic form of Exo1. The site S2 in Mlh1 mediates Exo1 recruitment in order to optimize MMR-dependent mutation avoidance. Given the conservation of Mlh1 and Exo1 interaction, it may readily impact Mlh1-dependent functions such as cancer prevention in higher eukaryotes.  相似文献   
82.
We have recently reported a validation study of a prototype low‐field strength quantitative magnetic resonance (QMR) instrument for measurement of human body composition (EchoMRI‐AH). QMR was very precise, but underreported fat mass (FM) by 2–4 kg when compared to a 4‐compartment (4C) model in this cross‐sectional study. Here, we report the performance of an updated instrument in two longitudinal studies where FM was decreasing. Healthy obese volunteers were given a modest energy deficit diet for 8 weeks (study A) and obese patients with heart failure and/or at high cardiovascular risk were prescribed a low energy liquid diet for 6 weeks (study B). FM was measured at the start and end of these periods by QMR, dual‐energy X‐ray absorptiometry (DXA) and 4C. A higher proportion of the weight lost came from fat in study A compared with study B, where loss of total body water (TBW) played a greater part. The intraclass correlation between QMR and 4C estimates of FM loss (ΔFat) was 0.95, but 20 of 22 estimates of ΔFat by QMR were lower than the corresponding estimate by the 4C model. Bland–Altman analysis demonstrated that estimates of FM loss by QMR were ~1.0 and 0.7 kg lower than those obtained with 4C (P = 0.0008) and DXA (P = 0.049), respectively. Measurement precision remained high. QMR measurement should prove valuable for quantifying modest changes of FM in small trials.  相似文献   
83.
A series of benzoyl and cinnamoyl nitrogen mustards tethered to different benzoheterocycles and to oligopyrroles structurally related to netropsin consisting of two pyrrole-amide units and terminating with an amidine moiety have been synthesised and a structure--activity relationship determined. Derivatives 3--10 have been evaluated for their sequence selective alkylating properties and cytotoxicity against human K562 leukaemia cells. They are 2- to 50-fold less cytotoxic than tallimustine, with compound 8 being the most potent member of this series. Among tallimustine isosters, the compounds with an indole 3 or benzothiophene 6 are 4-fold less cytotoxic than tallimustine, while the compounds with an N-methyl indole or benzofuran showed a 7- and 14-fold reduced cytotoxic potency, respectively. Our preliminary results indicate that these derivatives preferentially bind to AT-rich sequence with a sequence selectivity similar to tallimustine.  相似文献   
84.
Metformin, a biguanide derivate, has pleiotropic effects beyond glucose reduction, including improvement of lipid profiles and lowering microvascular and macrovascular complications associated with type 2 diabetes mellitus (T2DM). These effects have been ascribed to adenosine monophosphate-activated protein kinase (AMPK) activation in the liver and skeletal muscle. However, metformin effects are not attenuated when AMPK is knocked out and intravenous metformin is less effective than oral medication, raising the possibility of important gut pharmacology. We hypothesized that the pharmacology of metformin includes alteration of bile acid recirculation and gut microbiota resulting in enhanced enteroendocrine hormone secretion. In this study we evaluated T2DM subjects on and off metformin monotherapy to characterize the gut-based mechanisms of metformin. Subjects were studied at 4 time points: (i) at baseline on metformin, (ii) 7 days after stopping metformin, (iii) when fasting blood glucose (FBG) had risen by 25% after stopping metformin, and (iv) when FBG returned to baseline levels after restarting the metformin. At these timepoints we profiled glucose, insulin, gut hormones (glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY) and glucose-dependent insulinotropic peptide (GIP) and bile acids in blood, as well as duodenal and faecal bile acids and gut microbiota. We found that metformin withdrawal was associated with a reduction of active and total GLP-1 and elevation of serum bile acids, especially cholic acid and its conjugates. These effects reversed when metformin was restarted. Effects on circulating PYY were more modest, while GIP changes were negligible. Microbiota abundance of the phylum Firmicutes was positively correlated with changes in cholic acid and conjugates, while Bacteroidetes abundance was negatively correlated. Firmicutes and Bacteroidetes representation were also correlated with levels of serum PYY. Our study suggests that metformin has complex effects due to gut-based pharmacology which might provide insights into novel therapeutic approaches to treat T2DM and associated metabolic diseases.

Trial Registration:

www.ClinicalTrials.gov NCT01357876  相似文献   
85.
GPR119 receptor agonists improve glucose metabolism and alter gut hormone profiles in animal models and healthy subjects. We therefore investigated the pharmacology of GSK1292263 (GSK263), a selective GPR119 agonist, in two randomized, placebo-controlled studies that enrolled subjects with type 2 diabetes. Study 1 had drug-naive subjects or subjects who had stopped their diabetic medications, and Study 2 had subjects taking metformin. GSK263 was administered as single (25–800 mg; n = 45) or multiple doses (100–600 mg/day for 14 days; n = 96). Placebo and sitagliptin 100 mg/day were administered as comparators. In Study 1, sitagliptin was co-administered with GSK263 or placebo on Day 14 of dosing. Oral glucose and meal challenges were used to assess the effects on plasma glucose, insulin, C-peptide, glucagon, peptide tyrosine-tyrosine (PYY), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). After 13 days of dosing, GSK263 significantly increased plasma total PYY levels by ∼five-fold compared with placebo, reaching peak concentrations of ∼50 pM after each of the three standardized meals with the 300 mg BID dose. Co-dosing of GSK263 and metformin augmented peak concentrations to ∼100 pM at lunchtime. GSK263 had no effect on active or total GLP-1 or GIP, but co-dosing with metformin increased post-prandial total GLP-1, with little effect on active GLP-1. Sitagliptin increased active GLP-1, but caused a profound suppression of total PYY, GLP-1, and GIP when dosed alone or with GSK263. This suppression of peptides was reduced when sitagliptin was co-dosed with metformin. GSK263 had no significant effect on circulating glucose, insulin, C-peptide or glucagon levels. We conclude that GSK263 did not improve glucose control in type 2 diabetics, but it had profound effects on circulating PYY. The gut hormone effects of this GPR119 agonist were modulated when co-dosed with metformin and sitagliptin. Metformin may modulate negative feedback loops controlling the secretion of enteroendocrine peptides.

Trial Registration:

Clinicaltrials.gov NCT01119846 Clinicaltrials.gov NCT01128621  相似文献   
86.
Human T-cell leukemia virus type 1 (HTLV-1) Tax is thought to play a pivotal role in immortalization of T cells. We have recently shown that the expression of Tax protected the mouse T-cell line CTLL-2 against apoptosis induced by interleukin-2 (IL-2) deprivation and converted its growth from being IL-2 dependent to being IL-2 independent. In this study, we demonstrate that constitutive expression of bcl-xl but not bcl-2, bcl-xs, bak, bad, or bax was associated with apoptosis resistance after IL-2 deprivation in CTLL-2 cells that expressed Tax. Transient-transfection assays showed that bcl-x promoter was transactivated by wild-type Tax. Similar effects were observed in mutant Tax retaining transactivating ability through NF-kappaB. Deletion or substitution of a putative NF-kappaB binding site identified in the bcl-x promoter significantly decreased Tax-induced transactivation. This NF-kappaB-like element was able to form a complex with NF-kappaB family proteins in vitro. Furthermore, Tax-induced transactivation of the bcl-x promoter was also diminished by the mutant IkappaBalpha, which specifically inhibits NF-kappaB activity. Our findings suggest that constitutive expression of Bcl-x(L) induced by Tax through the NF-kappaB pathway contributes to the inhibition of apoptosis in CTLL-2 cells after IL-2 deprivation.  相似文献   
87.
In Western Europe, many pond owners introduce amphibians for ornamental purposes. Although indigenous amphibians are legally protected in most European countries, retailers are circumventing national and international legislation by selling exotic nonprotected sibling species. We investigated to what extent non‐native species of the European water frog complex (genus Pelophylax) have become established in Belgium, using morphological, mitochondrial and nuclear genetic markers. A survey of 87 sampling sites showed the presence of non‐native water frogs at 47 locations, mostly Marsh frogs (Pelophylax ridibundus). Surprisingly, at least 19% of all these locations also harboured individuals with mitochondrial haplotypes characteristic of Anatolian water frogs (Pelophylax cf. bedriagae). Nuclear genotyping indicated widespread hybridization and introgression between P. ridibundus and P. cf. bedriagae. In addition, water frogs of Turkish origin obtained through a licensed retailer, also contained P. ridibundus and P. cf. bedriagae, with identical haplotypes to the wild Belgian populations. Although P. ridibundus might have invaded Belgium by natural range expansion from neighbouring countries, our results suggest that its invasion was at least partly enhanced by commercial trade, with origins as far as the Middle East. Also the invasion and rapid spread of Anatolian lineages, masked by their high morphological similarity to P. ridibundus, is likely the result of unregulated commercial trade. We expect that Anatolian frogs will further invade the exotic as well as the native range of P. ridibundus and other Pelophylax species elsewhere in Western and Central Europe, with risks of large‐scale hybridization and introgression.  相似文献   
88.
One‐third of the human proteome is comprised of membrane proteins, which are particularly vulnerable to misfolding and often require folding assistance by molecular chaperones. Calnexin (CNX), which engages client proteins via its sugar‐binding lectin domain, is one of the most abundant ER chaperones, and plays an important role in membrane protein biogenesis. Based on mass spectrometric analyses, we here show that calnexin interacts with a large number of nonglycosylated membrane proteins, indicative of additional nonlectin binding modes. We find that calnexin preferentially bind misfolded membrane proteins and that it uses its single transmembrane domain (TMD) for client recognition. Combining experimental and computational approaches, we systematically dissect signatures for intramembrane client recognition by calnexin, and identify sequence motifs within the calnexin TMD region that mediate client binding. Building on this, we show that intramembrane client binding potentiates the chaperone functions of calnexin. Together, these data reveal a widespread role of calnexin client recognition in the lipid bilayer, which synergizes with its established lectin‐based substrate binding. Molecular chaperones thus can combine different interaction modes to support the biogenesis of the diverse eukaryotic membrane proteome.  相似文献   
89.
Hypomethylating agents reactivate tumor suppressor genes that are epigenetically silenced in cancer. Inevitably these genes are resilenced, leading to drug resistance. Using the MLH1 tumor suppressor gene as a model, we showed that decitabine-induced re-expression was dependent upon demethylation and eviction of promoter nucleosomes. Following decitabine withdrawal, MLH1 was rapidly resilenced despite persistent promoter demethylation. Single molecule analysis at multiple time points showed that gene resilencing was initiated by nucleosome reassembly on demethylated DNA and only then was followed by remethylation and stable silencing. Taken together, these data establish the importance of nucleosome positioning in mediating resilencing of drug-induced gene reactivation and suggest a role for therapeutic targeting of nucleosome assembly as a mechanism to overcome drug resistance.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号