首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   47篇
  国内免费   2篇
  2023年   3篇
  2022年   12篇
  2021年   32篇
  2020年   11篇
  2019年   10篇
  2018年   19篇
  2017年   22篇
  2016年   17篇
  2015年   38篇
  2014年   33篇
  2013年   51篇
  2012年   65篇
  2011年   52篇
  2010年   30篇
  2009年   26篇
  2008年   30篇
  2007年   26篇
  2006年   39篇
  2005年   26篇
  2004年   23篇
  2003年   15篇
  2002年   20篇
  2001年   15篇
  2000年   12篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   8篇
  1989年   3篇
  1987年   5篇
  1986年   5篇
  1985年   2篇
  1983年   4篇
  1982年   3篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   1篇
  1974年   2篇
  1973年   4篇
  1971年   2篇
  1970年   3篇
  1969年   4篇
  1967年   1篇
  1966年   4篇
  1965年   3篇
  1964年   1篇
排序方式: 共有714条查询结果,搜索用时 15 毫秒
101.
New analogues of the potent antihelmintic meclonazepam were prepared and evaluated against Schistosoma mansoni. The biological data suggests substitution at positions 2 and 4 of meclonazepam could provide promising analogues for prophylactic and therapeutic activity against S. mansoni.  相似文献   
102.
Many studies reported that oxidative and nitrosative stress might be important for the pathogenesis of Alzheimer's disease (AD) beginning with arguably the earliest stage of AD, i.e., as mild cognitive impairment (MCI). p53 is a proapoptotic protein that plays an important role in neuronal death, a process involved in many neurodegenerative disorders. Moreover, p53 plays a key role in the oxidative stress-dependent apoptosis. We demonstrated previously that p53 levels in brain were significantly higher in MCI and AD IPL (inferior parietal lobule) compared to control brains. In addition, we showed that in AD IPL, but not in MCI, HNE, a lipid peroxidation product, was significantly bound to p53 protein. In this report, we studied by means of immunoprecipitation analysis, the levels of markers of protein oxidation, 3-nitrotyrosine (3-NT) and protein carbonyls, in p53 in a specific region of the cerebral cortex, namely the inferior parietal lobule, in MCI and AD compared to control brains. The focus of these studies was to measure the oxidation and nitration status of this important proapoptotic protein, consistent with the hypothesis that oxidative modification of p53 could be involved in the neuronal loss observed in neurodegenerative conditions.  相似文献   
103.
Phosphorites from the Murray Ridge, NW Arabian Sea comprise nodules, bioclasts, and bone fragments. The nodules are made up of a homogeneous, light-colored phosphate nucleus consisting of Rivulariacean filamentous cyanobacteria and a thin dark-grey colored phosphate cortex showing abundant microbial filaments and microborings. The bioclasts comprise of  14–14.5 Ma old planktonic foraminifers, accepted as the time of deposition. Spherical to ovoid-shaped apatite microparticles resembling fossil bacteria are distinct components in the bioclasts. Bone fragments exhibit apatite fillings. The nodules and bone fragments consist entirely of carbonate fluorapatite (CFA) with low Al, K, and Th concentrations suggesting absence of continental detritus. Shale-normalized REE patterns of the samples support a seawater-derived composition. The highly uniform initial Nd values of − 4.8 to − 5.1 are interpreted as the seawater value at the onset of phosphatization  14 Ma ago. In contrast, 87Sr/86Sr ratios show a large range of 0.709055 to 0.709124 corresponding to unusually young stratigraphic ages of  1 to 3 Ma. The data are interpreted as evidence for post-depositional Sr exchange of the recrystallizing phosphorites with fluids isotopically not much different from modern seawater. It is concluded that the phosphorites formed under oxic, shallow-water conditions where microbial populations assimilated phosphorus primarily from seawater and mediated precipitation of CFA during early diagenesis at the sediment–water interface on different substrates.  相似文献   
104.
Large-scale gene expression analysis has been applied recently to uncover groups of genes that are co-regulated in particular processes. Here we undertake such an analysis on CAP, a protein that participates in the regulation of the actin cytoskeleton and in cAMP signaling in Dictyostelium. microarray analysis revealed that loss of CAP altered the expression of many cytoskeletal components. One of these, the Rho GDP-dissociation inhibitor RhoGDI1, was analyzed further. RhoGDI1 null cells expressed lower amounts of CAP, which failed to accumulate predominantly at the cell cortex. To further position CAP in the corresponding signal transduction pathways we studied CAP localization and cellular functioning in mutants that have defects in several signaling components. CAP showed correct localization and dynamics in all analyzed strains except in mutants with deficient cAMP dependent protein kinase A activity, where CAP preferentially accumulated in crown shaped structures. Ectopic expression of CAP improved the efficiency of phagocytosis in Gβ-deficient cells and restored the pinocytosis, morphology and actin distribution defects in a PI3 kinase double mutant (pi3k1/2 null). Our results show that CAP acts at multiple crossroads and links signaling pathways to the actin cytoskeleton either by physical interaction with cytoskeletal components or through regulation of their gene expression.  相似文献   
105.
Denitrification in the ocean is a major sink for fixed nitrogen in the global N budget, but the process is geographically restricted to a few oceanic regions, including three oceanic oxygen minimum zones (OMZ) and hemipelagic sediments worldwide. Here, we describe the diversity and community composition of microbes responsible for denitrification in the OMZ using polymerase chain reaction, sequence and fragment analysis of clone libraries of the signature genes (nirK and nirS) that encode the enzyme nitrite reductase, responsible for key denitrification transformation steps. We show that denitrifying assemblages vary in space and time and exhibit striking changes in diversity associated with the progression of denitrification from initial anoxia through nitrate depletion. The initial denitrifying assemblage is highly diverse, but succession on the scale of 3–12 days leads to a much less diverse assemblage and dominance by one or a few phylotypes. This progression occurs in the natural environment as well as in enclosed incubations. The emergence of dominants from a vast reservoir of rare types has implications for the maintenance of diversity of the microbial population and suggests that a small number of microbial dominants may be responsible for the greatest rates of transformations involving nitrous oxide and global fixed nitrogen loss. Denitrifying blooms, driven by a few types responding to episodic environmental changes and distributed unevenly in time and space, are consistent with the sampling effect model of diversity–function relationships. Canonical denitrification thus appears to have important parallels with both primary production and nitrogen fixation, which are typically dominated by regionally and temporally restricted blooms that account for a disproportionate share of these processes worldwide.  相似文献   
106.
The plant growth-promoting fungus (PGPF), Phoma sp. GS8-3, isolated from a zoysia grass rhizosphere, is capable of protecting cucumber plants against virulent pathogens. This fungus was investigated in terms of the underlying mechanisms and ability to elicit systemic resistance in Arabidopsis thaliana . Root treatment of Arabidopsis plants with a culture filtrate (CF) from Phoma sp. GS8-3 elicited systemic resistance against the bacterial speck pathogen Pseudomonas syringae pv. tomato DC3000 ( Pst ), with restricted disease development and inhibited pathogen proliferation. Pathway-specific mutant plants, such as jar1 (jasmonic acid insensitive) and ein2 (ethylene insensitive), and transgenic NahG plants (impaired in salicylate signalling) were protected after application of the CF, demonstrating that these pathways are dispensable (at least individually) in CF-mediated resistance. Similarly, NPR1 interference in npr1 mutants had no effect on CF-induced resistance. Gene expression studies revealed that CF treatment stimulated the systemic expression of both the SA-inducible PR-1 and JA/ET-inducible PDF1.2 genes. However, pathogenic challenge to CF-treated plants was associated with potentiated expression of the PR-1 gene and down-regulated expression of the PDF1.2 gene. The observed down-regulation of the PDF1.2 gene in CF-treated plants indicates that there may be cross-talk between SA- and JA/ET-dependent signalling pathways during the pathogenic infection process. In conclusion, our data suggest that CF of Phoma sp. GS8-3 induces resistance in Arabidopsis in a manner where SA and JA/ET may play a role in defence signalling.  相似文献   
107.
Metabolic engineering of ketocarotenoid biosynthesis in higher plants   总被引:1,自引:0,他引:1  
Ketocarotenoids such as astaxanthin and canthaxanthin have important applications in the nutraceutical, cosmetic, food and feed industries. Astaxanthin is derived from β-carotene by 3-hydroxylation and 4-ketolation at both ionone end groups. These reactions are catalyzed by β-carotene hydroxylase and β-carotene ketolase, respectively. The hydroxylation reaction is widespread in higher plants, but ketolation is restricted to a few bacteria, fungi, and some unicellular green algae. The recent cloning and characterization of β-carotene ketolase genes in conjunction with the development of effective co-transformation strategies permitting facile co-integration of multiple transgenes in target plants provided essential resources and tools to produce ketocarotenoids in planta by genetic engineering. In this review, we discuss ketocarotenoid biosynthesis in general, and characteristics and functional properties of β-carotene ketolases in particular. We also describe examples of ketocarotenoid engineering in plants and we conclude by discussing strategies to efficiently convert β-carotene to astaxanthin in transgenic plants.  相似文献   
108.
The protein glycation inhibitory activity of ethanolic extract of Lawsonia inermis (henna) plant tissues was evaluated in vitro using the model system of bovine serum albumin and glucose. Protein oxidation and glycation are posttranslational modifications that are implicated in the pathological development of many age-related disease processes. This study investigated the effects of Lawsonia inermis ethanolic extract and its components, on protein damage induced by a free radical generator in in vitro assay system. We found that alcoholic extract of Lawsonia inermis can effectively protect against protein damage and showed that its action is mainly due to Lawsone. In addition, the presence of gallic acid also plays an important role in the protective activity against protein oxidation and glycation. Two known compounds, namely, Lawsone and gallic acid previously isolated from this plant were subjected to glycation bioassay for the first time. It was found that the alcoholic extract, lawsone (1) and gallic acid (2) showed significant inhibition of Advanced Glycated End Products (AGEs) formation and exhibit 77.95%, 79.10% and 66.98% inhibition at a concentration of 1500 microg/mL, 1000 microg/mL and 1000 microM respectively. Lawsonia inermis, compounds 1 and 2 were found to be glycation inhibitors with IC(50) 82.06 +/- 0.13 microg/mL, 67.42 +/- 1.46 microM and 401.7 +/- 6. 23 microM respectively. This is the first report on the glycation activity of these compounds and alcoholic extract of Lawsonia inermis.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号