首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   664篇
  免费   45篇
  国内免费   1篇
  710篇
  2024年   4篇
  2023年   4篇
  2022年   16篇
  2021年   30篇
  2020年   12篇
  2019年   22篇
  2018年   24篇
  2017年   29篇
  2016年   43篇
  2015年   42篇
  2014年   40篇
  2013年   66篇
  2012年   70篇
  2011年   61篇
  2010年   29篇
  2009年   33篇
  2008年   33篇
  2007年   28篇
  2006年   20篇
  2005年   13篇
  2004年   14篇
  2003年   13篇
  2002年   12篇
  2001年   6篇
  2000年   9篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1973年   1篇
  1956年   1篇
排序方式: 共有710条查询结果,搜索用时 15 毫秒
211.
Fourier transform infrared spectroscopy was used to characterise highland and lowland populations of Polygonum minus Huds. grown in different controlled environments. A thermal perturbation technique of two-dimensional correlation infrared spectroscopy (2D-IR) correlation spectra was applied to establish differences between the populations. The absorption peaks at 3,480 cm?1 (hydroxyl group), 2,927 cm?1 (methyl group), 1,623 cm?1 (carbonyl group), and 1,068 cm?1 (C–O group) were particularly powerful in separating the populations. These peaks, which indicate the presence of carbohydrate, terpenes, amide and flavonoids were more intense for the highland populations than lowland populations, and increased in environments with a higher temperature. Wavenumbers (1,634, 669 cm?1) and (1,634, 1,555 cm?1) in the 2D-IR correlation spectra provided fingerprint signals to differentiate plants grown at different temperatures. This study demonstrates that IR fingerprinting, which combines mid-IR spectra and 2D-IR correlation spectra, can directly discriminate different populations of P. minus and the effects of temperature.  相似文献   
212.
Eleven different Aspergillus strains were evaluated for their ability to produce β-glucosidase using sugar cane bagasse as a sole carbon source under solid state fermentation (SSF). The most potent strains, A. niger NRC 7 (674.6 U/g ds) and A. oryzae NRRL 447 (83 U/g ds), were used in a mixed culture to enhance β-glucosidase production by co-culturing under SSF. In mixed culture, β-glucosidase of the two strains (814 U/g ds) was nearly 1.2- and 9.8-fold than that of monocultures of A. niger NRC 7A and A. oryzae NRRL 447, respectively. Optimization of the culture parameters, initial pH value, moisture content, inoculum size and ratios of the two strains. and incubation time exhibited a significant increase in β-glucosidase production (1,893 U/g ds) than before optimization. Single feeding with citrate-phosphate buffer, succinate buffer, casein. and soybean flour individually after the third day of the fermentation time and controlling the moisture content at 90 % (w/w) induced β-glucosidase production. Maximum enzyme production increased up to 2.1-fold compared to 2,188 U/g ds during normal batch culture. Among nitrogen sources, soybean flour gave the highest β-glucosidase (4,578 U/g ds). while urea reduced β-glucosidase production (1,693 U/g ds). However, the combination of buffers with soybean flour through two fed cycles resulted in a decrease of the enzyme than single fed with buffers or soybean flour alone.  相似文献   
213.
214.
Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via ‘One-At-A-Time Approach’ were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze–thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.  相似文献   
215.
A thermostable and organic solvent-tolerant lipase produced by Aneurinibacillus thermoaerophilus strain HZ was purified and characterised. The lipase was purified to apparent homogeneity with two steps: anion exchange chromatography on Q-Sepharose and gel filtration on Sephadex-G75. A final specific activity of 43.5 U/mg was obtained with an overall recovery of 19.7% and 15.6 purification fold. The molecular mass of the HZ lipase was estimated to be 50 kDa. The optimum pH for the activity of the purified HZ lipase was 7.0. The stability showed a broad range of pH values between pH 4.0 and 9.0 at 30 °C. The purified HZ lipase exhibited an optimum temperature of 65 °C with a half-life of 3 h and 10 min at 65 °C. The activity of the purified HZ lipase was stimulated in the presence of Ca2+. Organic solvents such as dimethyl sulfoxide (DMSO), methanol, n-tetradecane and n-hexadecane enhanced the lipase activity. Studies on the effect of oil showed that the lipase preferred natural oil, such as sunflower oil, over synthetic substrates.  相似文献   
216.
Individual effects of application of nitrogen (N) and plant densities (PD) were reported in various studies; however an interactive effect of N and PD in cotton was not studied. To explore the benefits of interactive effects of N fertilizer and PD to increase the quality of cotton. This study was carried out in randomized complete block design (RCBD) with split plot arrangement. In split plot arrangement, main plot was consisted of N application rate and in sub plots different PD were done. There were two nitrogen levels; low N level (F1) 120 kg ha−1 and high N level (F2) 180 kg ha−1 and three planting densities; 8 plants m−2 as low density (LD), 10 plants m−2 as medium density (MD) and 12 plants m−2 as high density (HD). In this study we observed the interactive effect of N application levels and PD on cotton photosynthetic and agronomic traits of various stages of development. Results showed that cotton growth and N contents was varied among treatments on different development stages. Plant biomass production, photosynthetic rate (Pn), intercellular CO2 (Ci), water use efficiency (WUE) and N contents were unaffected at the seedling stage by N application rate and PD, however, the highest Pn, Ci and N contents was at squaring stage followed by blooming stage. Higher seed cotton yield and lint yield were obtained F1 with HD, and F2 with MD yielded the highest N contents and cotton yield among treatments. We found that the squaring stage was more critical, followed by the blooming stage when considering N rate and PD.  相似文献   
217.
Nitrogen (N) affects all levels of plant function from metabolism to resource allocation, growth, and development and Magnesium (Mg) is a macronutrient that is necessary to both plant growth and health. Radish (Raphanus sativus L.) occupies an important position in the production and consumption of vegetables globally, but there are still many problems and challenges in its nutrient management. A pot trial was conducted to investigate the effects of nitrogen and magnesium fertilizers on radish during the year 2018–2019. Nitrogen and magnesium was applied at three rates (0, 0.200, and 0.300 g N kg−1 soil) and (0, 0.050, and 0.100 g Mg kg−1 soil) respectively. The experiment was laid out in a completely randomized design (CRD) and each treatment was replicated three times. Growth, yield and quality indicators of radish (plant height, root length, shoot length, plant weight, total soluble sugar, ascorbic acid, total soluble protein, crude fiber, etc.) were studied. The results indicated that different rates of nitrogen and magnesium fertilizer not only influence the growth dynamics and yields but also enhances radish quality. The results revealed that the growth, yield and nutrient contents of radish were increased at a range of 0.00 g N. kg−1 soil to 0.300 g N. kg−1 soil and 0.00 g Mg. kg−1 soil to 0.050 g Mg. kg−1 soil and then decreased gradually at a level of 0.100 g Mg. kg−1 soil. In contrast, the crude fiber contents in radish decreased significantly with increasing nitrogen and magnesium level but increased significantly at Mg2 level (0.050 g Mg. kg−1 soil). The current study produced helpful results for increasing radish quality, decreasing production costs, and diminishing underground water contamination.  相似文献   
218.
Malaysia is fortunate and proud to contain some of the world’s richest biodiversity. In Malaysia, there are an estimated 185,000 species of fauna and 12,500 species of flowering plants, many of which are endemic to tropical forests in this region. Indeed, such diversity is an important and invaluable national asset to safeguard both present and future generations. In vitro conservation offers possible techniques for the preservation of plant germplasm that at present is difficult to maintain or is maintained with limited success. Research at the Universiti Kebangsaan Malaysia (The National University of Malaysia) focuses on the cryopreservation of woody fruit species with seeds that cannot tolerate cryopreservation (recalcitrant or intermediate). Among the plants with recalcitrant seeds are such traditionally important edible tropical fruits as mangosteen, langsat, and rambai (Garcinia mangostana, Lansium domesticum, and Baccaurea motleyana). Citrus aurantifolia, Citrus suhuiensis, Citrus madurensis, Citrus hystrix, and Fortunella polyandra are among the Citrus and Citrus-related species studied. Cryopreservation studies include the Nepenthes species (pitcher plants) of Malaysia. Fundamental research on desiccation and low-temperature tolerance and on the physiology of desiccation are used to understand seed behavior, a prerequisite for the development of successful conservation techniques. At the same time, cryopreservation protocols for several Citrus and forestry species were developed for embryonic axes and adventitious shoots, mainly using rapid dehydration and PVS2 vitrification techniques. There are no successful standard techniques or protocols for species with highly recalcitrant seeds such as Garcinia species. Modification of existing protocols or development of new methods is required, but this can be accomplished only when a detailed understanding of the recalcitrant nature of the seeds or explants is achieved. While we have considerable knowledge concerning the basics of biochemical processes and some molecular data from work on desiccation-tolerant seeds, a great need remains for understanding the cause of the recalcitrance or desiccation sensitivity of these seeds. It may be necessary to use a systems biology approach that exploits the “omics” technologies to generate global molecular data. In combination with bioinformatics for data integration and analyses, this approach would move toward improved modeling of the biological pathways associated with the development of recalcitrant seeds.  相似文献   
219.
220.
Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号