首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1532篇
  免费   95篇
  1627篇
  2022年   8篇
  2021年   20篇
  2020年   9篇
  2019年   13篇
  2018年   15篇
  2017年   11篇
  2016年   30篇
  2015年   37篇
  2014年   43篇
  2013年   85篇
  2012年   79篇
  2011年   84篇
  2010年   60篇
  2009年   52篇
  2008年   81篇
  2007年   76篇
  2006年   77篇
  2005年   83篇
  2004年   81篇
  2003年   72篇
  2002年   78篇
  2001年   49篇
  2000年   40篇
  1999年   33篇
  1998年   16篇
  1997年   18篇
  1996年   15篇
  1995年   9篇
  1994年   9篇
  1993年   9篇
  1992年   27篇
  1991年   29篇
  1990年   19篇
  1989年   21篇
  1988年   30篇
  1987年   26篇
  1986年   24篇
  1985年   21篇
  1984年   23篇
  1983年   9篇
  1982年   10篇
  1981年   9篇
  1980年   7篇
  1978年   6篇
  1976年   5篇
  1974年   14篇
  1973年   12篇
  1972年   8篇
  1970年   5篇
  1966年   8篇
排序方式: 共有1627条查询结果,搜索用时 0 毫秒
81.
One way to use a crop germplasm collection directly to map QTLs without using line-crossing experiments is the whole genome association mapping. A major problem with association mapping is the presence of population structure, which can lead to both false positives and failure to detect genuine associations (i.e., false negatives). Particularly in highly selfing species such as Asian cultivated rice, high levels of population structure are expected and therefore the efficiency of association mapping remains almost unknown. Here, we propose an approach that combines a Bayesian method for mapping multiple QTLs with a regression method that directly incorporates estimates of population structure. That is, the effects due to both multiple QTLs and population structure were included in our statistical model. We evaluated the efficiency of our approach in simulated- and real-trait analyses of a rice germplasm collection. Simulation analyses based on real marker data showed that our model could suppress both false-positive and false-negative rates and the error of estimation of genetic effects over single QTL models, indicating that our model has statistically desirable attributes over single QTL models. As real traits, we analyzed the size and shape of milled rice grains and found significant markers that may be linked to QTLs reported previously. Association mapping should have good prospects in highly selfing species such as rice if proper methods are adopted. Our approach will be useful for the whole genome association mapping of various selfing crop species.  相似文献   
82.
AIMS: The purpose of this paper was to screen candidate bacterial strains for the production of proteases suitable for application to the degradation of pathogenic forms of prion protein (PrP(Sc)). This paper describes the biochemical characteristics and proteolytic activity of the isolated protease. METHODS AND RESULTS: After screening more than 200 bacterial proteases for keratinolytic activity, we identified a Bacillus stain that produced a protease exhibiting high-degradation activity against a scrapie PrP(Sc). Sequence analysis indicated that this serine-protease belonged to the Subtilisin family and had optimum pH and temperature ranges of 9-10 and 60-70 degrees C. Western blotting analysis revealed that the protease was also capable of decomposing bovine spongiform encephalopathy-infected brain homogenate. In addition, the protease was demonstrated to degrade dried PrP(Sc) that had become firmly attached to a plastic surface considerably more effectively than proteinase K or PWD-1, a previously reported keratinase. CONCLUSIONS: These results indicate that the isolated protease exhibited higher activity for PrP(Sc) degradation compared with other proteases examined. SIGNIFICANCE AND IMPACT OF THE STUDY: This protease could be used under moderate conditions for the decontamination of precision instruments that are susceptible to PrP(Sc) contamination.  相似文献   
83.
The thioredoxin system plays an important role in maintaining a reducing environment in the cell. Recently, several thioredoxin binding partners have been identified and proposed to mediate aspects of redox signaling, but the significance of these interactions is unclear in part due to incomplete understanding of the mechanism for thioredoxin binding. Thioredoxin-interacting protein (Txnip) is critical for regulation of glucose metabolism, the only currently known function of which is to bind and inhibit thioredoxin. We explored the mechanism of the Txnip-thioredoxin interaction and present evidence that Txnip and thioredoxin form a stable disulfide-linked complex. We identified two Txnip cysteines that are important for thioredoxin binding and showed that this interaction is consistent with a disulfide exchange reaction between oxidized Txnip and reduced thioredoxin. These cysteines are not conserved in the broader family of arrestin domain-containing proteins, and we demonstrate that the thioredoxin-binding property of Txnip is unique. These data suggest that Txnip is a target of reduced thioredoxin and provide insight into the potential role of Txnip as a redox-sensitive signaling protein.  相似文献   
84.
The major components of the mitogen-activated protein kinase (MAPK) cascades are MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Recent rapid progress in identifying members of MAPK cascades suggests that a number of such signaling pathways exist in cells. To date, however, how the specificity and efficiency of the MAPK cascades is maintained is poorly understood. Here, we have identified a novel mouse protein, termed Jun N-terminal protein kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), by a yeast two-hybrid screen, using JNK3 MAPK as the bait. Of the mammalian MAPKs tested (JNK1, JNK2, JNK3, ERK2, and p38alpha), JSAP1 preferentially coprecipitated with the JNKs in cotransfected COS-7 cells. JNK3 showed a higher binding affinity for JSAP1, compared with JNK1 and JNK2. In similar cotransfection studies, JSAP1 also interacted with SEK1 MAPKK and MEKK1 MAPKKK, which are involved in the JNK cascades. The regions of JSAP1 that bound JNK, SEK1, and MEKK1 were distinct from one another. JNK and MEKK1 also bound JSAP1 in vitro, suggesting that these interactions are direct. In contrast, only the activated form of SEK1 associated with JSAP1 in cotransfected COS-7 cells. The unstimulated SEK1 bound to MEKK1; thus, SEK1 might indirectly associate with JSAP1 through MEKK1. Although JSAP1 coprecipitated with MEK1 MAPKK and Raf-1 MAPKKK, and not MKK6 or MKK7 MAPKK, in cotransfected COS-7 cells, MEK1 and Raf-1 do not interfere with the binding of SEK1 and MEKK1 to JSAP1, respectively. Overexpression of full-length JSAP1 in COS-7 cells led to a considerable enhancement of JNK3 activation, and modest enhancement of JNK1 and JNK2 activation, by the MEKK1-SEK1 pathway. Deletion of the JNK- or MEKK1-binding regions resulted in a significant reduction in the enhancement of the JNK3 activation in COS-7 cells. These results suggest that JSAP1 functions as a scaffold protein in the JNK3 cascade. We also discuss a scaffolding role for JSAP1 in the JNK1 and JNK2 cascades.  相似文献   
85.
UDP-galactose transporter is a membrane protein localized in the Golgi apparatus. It translocates UDP-galactose from the cytosol into the Golgi lumen, thus providing galactosyltransferases with their substrate. We characterized murine UDP-galactose transporter through molecular cloning for the following purposes: (i) to elucidate the molecular bases underlying the genetic defects of murine Had-1 mutants, which are deficient in UDP-galactose transporting activity, and (ii) to obtain information that would help us in planning rational approaches to identify functionally essential regions, based on comparison of primary structures between human and murine UDP-galactose transporters. We identified five nonsense mutations, one missense Gly178Asp mutation, and two aberrant splicing mutations. Although glycine178 is highly conserved among nucleotide-sugar transporters, a Gly178Ala variant was functional. The species-differences between human and murine UDP-galactose transporters were largely confined to the N- and C-terminal regions of the transporters. Substantial deletions in the N- and C-terminal regions did not lead to loss of UDP-galactose transporting activity, indicating that these cytosolic regions are dispensable for the transporting activity. The transporter was fused with green-fluorescent protein at the C-terminal cytosolic tail without impairing the functions of either protein. Our results demonstrate the importance of the transmembrane core region of the UDP-galactose transporter protein.  相似文献   
86.
A colorimetric whole-cell sensor for dimethyl sulfide (DMS) was constructed based on the in vivo conversion of intrinsic pigments in response to the analyte. In a marine bacterium, Rhodovulum sulfidophilum, carotenoids are synthesized via the spheroidene pathway. In this pathway, demethylspheroidene, a yellow carotenoid, is converted to spheroidene under catalysis of O-methyltransferase. Spheroidene monooxygenase (CrtA) catalyzes the terminal step of the pathway and converts spheroidene to spheroidenone, a red carotenoid. Here, the CrtA gene in R. sulfidophilum was removed and then reintroduced downstream of the DMS dehydrogenase gene promoter. Using this whole-cell sensor, 3 μM DMS or dimethyl sulfoxide can be detected without adding any color-forming reagent. The ratio of the red spheroidenone to total carotenoids increased, as the DMS concentration was raised to 0.3 mM. Comparison of the signal to the background color indicated a shift in the color coordinate from a yellow to a red hue. An intense signal was obtained with 1-day incubation at a high cell density when sensor cells at the exponential growth phase were used. These results show that the genetically engineered R. sulfidophilum cells can be used to monitor the quality of marine aquacultural environments by the naked eye.  相似文献   
87.
Predation and brood parasitism are common reasons for nesting failure in passerine species and the additive impact by invasive species is a major conservation concern, particularly on tropical islands. Recognising the relative contribution of the different components of nesting failure rates is important to understand co-evolutionary interactions within brood parasite–host systems. In the remote archipelago of New Caledonia, the fan-tailed gerygone Gerygone flavolateralis is the exclusive host of the brood-parasitic shining bronze-cuckoo Chalcites lucidus. Additionally, invasive rodents also possibly have an impact on breeding success. To estimate the impact of potential nest predators, we 1) video monitored nests to identify predators, 2) estimated the probability of predation based on nest visibility and predator abundance and 3) tested the possibility that the location of experimental nests and lack of odour cues decrease the predation by rodents. In addition, we estimated nest survival rates using data collected in different habitats over the course of eight breeding seasons. Nesting success of fan-tailed gerygones was relatively low and predation was the main cause of nesting failure. We recorded mainly predation by native birds, including the shining bronze-cuckoo, whereas predation by rats was rare. In open habitats predation by cuckoos was much lower than predation by other avian predators. Neither predator activity around nests nor nest visibility influenced the probability of predation. Experimental nests in more accessible locations and containing an odorous bait were more exposed to rodent predation. Apparently, the fan-tailed gerygone has either never been specifically vulnerable to predation by rats or has developed anti-predator adaptations.  相似文献   
88.
The use of bovine brain has been prohibited in many countries because of the world-wide prevalence of mad cow disease, and thus porcine brain is expected to be a new source for the preparation of gangliosides. Here, we report the presence of a ganglioside in porcine brain which is strongly resistant to hydrolysis by endoglycoceramidase, an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides of various glycosphingolipids. Five major gangliosides (designated PBG-1, 2, 3, 4, 5) were extracted from porcine brain by Folch's partition, followed by mild alkaline hydrolysis and PBA column chromatography. We found that PBG-2, but not the others, was strongly resistant to hydrolysis by the enzyme. After the purification of PBG-2 with Q-Sepharose, Silica gel 60 and Prosep-PB chromatographies, the structure of PBG-2 was determined by GC, GC-MS, FAB-MS and NMR spectroscopy as Fucalpha1-2Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-4Glcbeta1-1'Cer (fucosyl-GM1a). The ceramide was mainly composed of C18:0 and C20:0 fatty acids and d18:1 and d20:1 sphingoid bases. The apparent kcat/Km for fucosyl-GM1a was found to be 30 times lower than that for GM1a, indicating that terminal fucosylation makes GM1a resistant to hydrolysis by the enzyme. This report indicates the usefulness of endoglycoceramidase to prepare fucosyl-GM1a from porcine brain.  相似文献   
89.
Embryonic development of the liver is closely associated with vascular organization. However, little is known about the mechanisms of vascular differentiation during liver development. Our previous study showed that the maturation of sinusoidal endothelial cells (SECs) occurred during embryonic day 13.0 (E13.0) to E15.0. To improve our understanding of SEC differentiation, we examined here the expression of maturation markers, SE-1 and stabilin-2, in fetal livers and also attempted to establish an in vitro SEC differentiation system by culturing E13.5 fetal liver cells. Immunohistochemical examination of SE-1 and stabilin-2 expression during fetal rat liver development revealed that these differentiation markers were co-expressed in SECs in the late stage of liver development, although stabilin-2 was expressed in almost all vascular endothelial cells in the early stage. Liver cells from the E13.5 rat fetus were cultured in EBM-2 medium containing vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1) and VEGF plus SB-431542 (an inhibitor of the TGF-β1 receptor, activin receptor-like kinase 5 [ALK-5]). In vitro SEC differentiation, as indicated by the appearance of cells co-expressing SE-1 and stabilin-2 and of cells with cytoplasmic fenestrae in endothelial sheets, was induced by the addition of both VEGF and SB-431542, an inhibitor of the phosphorylation of Smad2/3 but not that of Smad1/5/8 in the cultured cells. These results indicate for the first time that both VEGF signaling and the blocking of the ALK-5-Smad2/3 signal pathway are important for the fetal differentiation of SECs.  相似文献   
90.
Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号