首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2052篇
  免费   118篇
  2170篇
  2022年   7篇
  2021年   14篇
  2020年   13篇
  2019年   14篇
  2018年   21篇
  2017年   17篇
  2016年   35篇
  2015年   51篇
  2014年   56篇
  2013年   108篇
  2012年   109篇
  2011年   114篇
  2010年   69篇
  2009年   71篇
  2008年   98篇
  2007年   112篇
  2006年   98篇
  2005年   104篇
  2004年   103篇
  2003年   92篇
  2002年   96篇
  2001年   68篇
  2000年   69篇
  1999年   57篇
  1998年   24篇
  1997年   28篇
  1996年   24篇
  1995年   29篇
  1994年   23篇
  1993年   19篇
  1992年   37篇
  1991年   46篇
  1990年   34篇
  1989年   34篇
  1988年   31篇
  1987年   28篇
  1986年   24篇
  1985年   23篇
  1984年   26篇
  1983年   16篇
  1982年   14篇
  1981年   11篇
  1980年   8篇
  1979年   11篇
  1978年   10篇
  1977年   7篇
  1975年   11篇
  1974年   8篇
  1972年   7篇
  1969年   8篇
排序方式: 共有2170条查询结果,搜索用时 15 毫秒
91.
The plant cell changes its cell wall architecture during growth and development through synthesis and degradation of wall polysaccharides. Changes of chemical components in the cell wall include not only the synthesis and degradation but also the shift of molecular-weight distribution of certain species of the component polysaccharides. The changes in chemical structure, in turn lead to alteration of physical properties of the cell wall. Changes of physical parameters of cell walls obtained by a physical method accord with the biochemical degradation of polysaccharides. The changes in chemical structures of the cell wall are regulated by plant hormones, stress signals and gene expression. The physical and chemical studies of the cell wall have disclosed that degradation and/or depolymerization of wall polysaccahrides causes decrease in viscosity of the cell wall, leading further extension of the cell wall even under the unchanged osmotic relation. Furthermore, cell walls of outer and inner tissues play different regulatory roles in tissue growth and stem strength was governed by the number of cellulose molecules in the cell wall. Recipient of the Botanical Society Award for Young Scientists, 1990.  相似文献   
92.
Orexins, which were initially identified as endogenous peptide ligands for two orphan G-protein coupled receptors (GPCRs), have been shown to have an important role in the regulation of energy homeostasis. Furthermore, the discovery of orexin deficiency in narcolepsy patients indicated that orexins are highly important factors for the sleep/wakefulness regulation. The efferent and afferent systems of orexin-producing neurons suggest interactions between these cells and arousal centers in the brainstem as well as important feeding centers in the hypothalamus. Electrophysiological studies have shown that orexin neurons are regulated by humoral factors, including leptin, glucose, and ghrelin as well as monoamines and acetylcholin. Thus, orexin neurons have functional interactions with hypothalamic feeding pathways and monoaminergic/cholinergic centers to provide a link between peripheral energy balance and the CNS mechanisms that coordinate sleep/wakefulness states and motivated behavior such as food seeking.  相似文献   
93.
In order to establish industrial production of 5′-inosinic acid (5′-IMP), a permeability mutant, KY13171, of Brevibacterium ammoniagenes, which accumulated 7 to 8 grams of 5′-IMP per liter and 4 to 6 grams of hypoxanthine (Hx) per liter (calculated as 5′-IMP), was improved by a genetical procedure. Further improved mutants were selected stepwise through repeating mutational work. The finally selected mutant. KY13369, accumulated 20 to 27 grams of 5′-IMP per liter, but not Hx.

Increased productivity of 5′-IMP and decreased productivity of Hx were not caused by the changes in 5′-IMP degrading activity, because these activities were not significantly different among the mutants. These results appear to indicate that the increased accumulation of 5′-IMP may be caused by the improvement in membrane permeability for 5′-IMP. However, the changes in phospholipid and fatty acid compositions were not enough to explain the increased permeability.  相似文献   
94.
Predation and brood parasitism are common reasons for nesting failure in passerine species and the additive impact by invasive species is a major conservation concern, particularly on tropical islands. Recognising the relative contribution of the different components of nesting failure rates is important to understand co-evolutionary interactions within brood parasite–host systems. In the remote archipelago of New Caledonia, the fan-tailed gerygone Gerygone flavolateralis is the exclusive host of the brood-parasitic shining bronze-cuckoo Chalcites lucidus. Additionally, invasive rodents also possibly have an impact on breeding success. To estimate the impact of potential nest predators, we 1) video monitored nests to identify predators, 2) estimated the probability of predation based on nest visibility and predator abundance and 3) tested the possibility that the location of experimental nests and lack of odour cues decrease the predation by rodents. In addition, we estimated nest survival rates using data collected in different habitats over the course of eight breeding seasons. Nesting success of fan-tailed gerygones was relatively low and predation was the main cause of nesting failure. We recorded mainly predation by native birds, including the shining bronze-cuckoo, whereas predation by rats was rare. In open habitats predation by cuckoos was much lower than predation by other avian predators. Neither predator activity around nests nor nest visibility influenced the probability of predation. Experimental nests in more accessible locations and containing an odorous bait were more exposed to rodent predation. Apparently, the fan-tailed gerygone has either never been specifically vulnerable to predation by rats or has developed anti-predator adaptations.  相似文献   
95.
96.
Ligand binding triggers clathrin-mediated and, at high ligand concentrations, clathrin-independent endocytosis of EGFR. Clathrin-mediated endocytosis (CME) of EGFR is also induced by stimuli activating p38 MAPK. Mechanisms of both ligand- and p38-induced endocytosis are not fully understood, and how these pathways intermingle when concurrently activated remains unknown. Here we dissect the mechanisms of p38-induced endocytosis using a pH-sensitive model of endogenous EGFR, which is extracellularly tagged with a fluorogen-activating protein, and propose a unifying model of the crosstalk between multiple EGFR endocytosis pathways. We found that a new locus of p38-dependent phosphorylation in EGFR is essential for the receptor dileucine motif interaction with the σ2 subunit of clathrin adaptor AP2 and concomitant receptor internalization. p38-dependent endocytosis of EGFR induced by cytokines was additive to CME induced by picomolar EGF concentrations but constrained to internalizing ligand-free EGFRs due to Grb2 recruitment by ligand-activated EGFRs. Nanomolar EGF concentrations rerouted EGFR from CME to clathrin-independent endocytosis, primarily by diminishing p38-dependent endocytosis.  相似文献   
97.
It is known that Bacillus subtilis releases membrane vesicles (MVs) during the SOS response, which is associated with cell lysis triggered by the PBSX prophage-encoded cell-lytic enzymes XhlAB and XlyA. In this study, we demonstrate that MVs are released under various stress conditions: sucrose fatty acid ester (SFE; surfactant) treatment, cold shock, starvation, and oxygen deficiency. B. subtilis possesses four major host-encoded cell wall-lytic enzymes (autolysins; LytC, LytD, LytE, and LytF). Deletions of the autolysin genes abolished autolysis and the consequent MV production under these stress conditions. In contrast, deletions of xhlAB and xlyA had no effect on autolysis-triggered MV biogenesis, indicating that autolysis is a novel and prophage-independent pathway for MV production in B. subtilis. Moreover, we found that the cell lysis induced by the surfactant treatment was effectively neutralized by the addition of exogenous purified MVs. This result suggests that the MVs can serve as a decoy for the cellular membrane to protect the living cells in the culture from membrane damage by the surfactant. Our results indicate a positive effect of B. subtilis MVs on cell viability and provide new insight into the biological importance of the autolysis phenomenon in B. subtilis.  相似文献   
98.
Porcine induced pluripotent stem cells (iPSCs) provide useful information for translational research. The quality of iPSCs can be assessed by their ability to differentiate into various cell types after chimera formation. However, analysis of chimera formation in pigs is a labor‐intensive and costly process, necessitating a simple evaluation method for porcine iPSCs. Our previous study identified mouse embryonic stem cell (ESC)‐specific hypomethylated loci (EShypo‐T‐DMRs), and, in this study, 36 genes selected from these were used to evaluate porcine iPSC lines. Based on the methylation profiles of the 36 genes, the iPSC line, Porco Rosso‐4, was found closest to mouse pluripotent stem cells among 5 porcine iPSCs. Moreover, Porco Rosso‐4 more efficiently contributed to the inner cell mass (ICM) of blastocysts than the iPSC line showing the lowest reprogramming of the 36 genes (Porco Rosso‐622‐14), indicating that the DNA methylation profile correlates with efficiency of ICM contribution. Furthermore, factors known to enhance iPSC quality (serum‐free medium with PD0325901 and CHIR99021) improved the methylation status at the 36 genes. Thus, the DNA methylation profile of these 36 genes is a viable index for evaluation of porcine iPSCs. genesis 51:763–776. © 2013 Wiley Periodicals, Inc.  相似文献   
99.
Molecular identification of endogenous enzymes and biologically active substances from complex biological sources remains a challenging task, and although traditional biochemical purification is sometimes regarded as outdated, it remains one of the most powerful methodologies for this purpose. While biochemical purification usually requires large amounts of starting material and many separation steps, we developed an advanced method named “proteomic correlation profiling” in our previous study. In proteomic correlation profiling, we first fractionated biological material by column chromatography, and then calculated each protein''s correlation coefficient between the enzyme activity profile and protein abundance profile determined by proteomics technology toward fractions. Thereafter, we could choose possible candidates for the enzyme among proteins with a high correlation value by domain predictions using informatics tools. Ultimately, this streamlined procedure requires fewer purification steps and reduces starting materials dramatically due to low required purity compared with conventional approaches. To demonstrate the generality of this approach, we have now applied an improved workflow of proteomic correlation profiling to a drug metabolizing enzyme and successfully identified alkaline phosphatase, tissue-nonspecific isozyme (ALPL) as a phosphatase of CS-0777 phosphate (CS-0777-P), a selective sphingosine 1-phosphate receptor 1 modulator with potential benefits in the treatment of autoimmune diseases including multiple sclerosis, from human kidney extract. We identified ALPL as a candidate protein only by the 200-fold purification and only from 1 g of human kidney. The identification of ALPL as CS-0777-P phosphatase was strongly supported by a recombinant protein, and contribution of the enzyme in human kidney extract was validated by immunodepletion and a specific inhibitor. This approach can be applied to any kind of enzyme class and biologically active substance; therefore, we believe that we have provided a fast and practical option by combination of traditional biochemistry and state-of-the-art proteomic technology.Molecular identification for an enzyme reaction or biologically active substance in an organism is challenging, although molecular biological methodologies such as expression cloning (1), recombinant protein panel (2) and RNAi screening (3) have been introduced recently as alternative approaches. Conventional biochemical purification has provided a number of successes and thus still remains a powerful, though labor-intensive strategy.In the traditional protein purification, it had been necessary to purify an individual protein nearly to homogeneity at a microgram amount so that the purified protein could be analyzed by N-terminal amino acid sequencing. Protein identification by mass spectrometry subsequently revolutionized this technology by enabling identification of proteins at much lower abundances: individual proteins could then be associated with specific activities as soon as a band in SDS-PAGE could be observed, even when the purified protein was far from homogeneity (46). Although this streamlined the workflow by reducing the required starting materials as well as the separation steps for protein purification, a faster and more generalized approach from smaller starting material has still been desired because some proteins are physiochemically difficult for example in solubilization and stability. To solve these problems, we devised a proteomic correlation profiling methodology (7).The basic concept of proteomic correlation profiling was originally developed by Andersen et al. (8). They quantitatively profiled hundreds of proteins across several centrifugation fractions by mass spectrometry and identified centrosomal proteins by calculating the correlation of these protein expression profiles with already known centrosomal proteins. In the following study, Foster et al. applied this strategy to map more than 1400 proteins to ten subcellular locations (9). Although these studies used centrifugation as a separation method and a known marker profile as a standard for correlation, we extended this concept to use chromatography as a separation method and kinase activity as a basis for comparison; our approach successfully identified a kinase responsible for phosphorylation of peptide substrates just after one step chromatography, and was termed proteomic correlation profiling (7). Independently, Kuromitsu et al. reported identification of an active substance in the serum response element-dependent luciferase assay from interstitial cystitis urine after three-step chromatography by a similar concept (10). In theory, this general proteomic correlation profiling strategy can be adapted to any kind of separation method and activity profile but no other example has been reported thus far, therefore, actual examples where the method can be applied to other enzyme classes are required to prove its generality.Multiple sclerosis is the most common autoimmune disorder of the central nerve system in which the fatty myelin sheaths around the axons of the brain and spinal cord are damaged, leading to demyelination and scarring (11, 12). Until recently, the standard treatments for multiple sclerosis such as interferon beta, glatiramer acetate, mitoxantrone, and natalizumab would often cause severe adverse events (13, 14), providing an opportunity for development of less dangerous treatments for this disease. However, in 2010, Food and Drug Administration approved fingolimod (Gilenya; chemical structure in Fig. 1) as the first oral medicine, and recommended this as a first-line treatment for relapsing-remitting multiple sclerosis, opening up a new therapeutic approach to the disease (15).Open in a separate windowFig. 1.The chemical structures of CS-0777, fingolimod and their phosphorylated derivatives.Sphingosine 1-phosphate receptor 1 (S1P1)1 modulators are emerging as a new class of drugs with potential therapeutic application in multiple sclerosis (15), and fingolimod is a nonselective sphingosine 1-phosphate (S1P) receptor modulator (1618, 21, 22). Given its structural similarity to sphingosine, fingolimod is phosphorylated in vivo by sphingosine kinase, in particular sphingosine kinase 2 (SPHK2) (19, 20), and the fingolimod-phosphate (fingolimod-P, Fig. 1) binds to and activates four G protein-coupled S1P receptors (21, 22). By this mechanism, fingolimod-P induces internalization of S1P1 on lymphocytes, blocking the ability of the receptor to support lymphocyte egress and recirculation through secondary lymphoid organs. This suppresses immune responses and is presumably the main immunomodulatory mode of action of fingolimod.CS-0777 (Fig. 1) is a novel selective S1P1 modulator (23). Although the immunomodulatory effects are supposed to be mainly mediated by S1P1, some lines of evidence suggest that the agonist activity on S1P receptor 3 (S1P3) could cause acute toxicity and cardiovascular deregulation, including bradycardia in rodents (24, 25). Thus, CS-0777 was designed to have more selectivity on S1P1 over S1P3 in contrast to fingolimod-P which has potent agonistic activity for S1P3, S1P4, and S1P5 in vitro (22). Like fingolimod, CS-0777 is also a prodrug phosphorylated in vivo, and the phosphorylated CS-0777 (CS-0777-P, Fig. 1) agonizes S1P1 with more than 300-fold selectivity relative to S1P3 whereas CS-0777-P has weaker effects on S1P5 and no activity on S1P2 (23). CS-0777 showed immunosuppressive activity in mouse and rat models of experimental autoimmune encephalitis, animal models for multiple sclerosis. In healthy volunteers, single oral doses of CS-0777 caused marked, dose-dependent decreases in numbers of circulating lymphocytes, including marked and reversible decreases in circulating T and B cells (26). Furthermore, in multiple sclerosis patients, single oral doses of CS-0777 caused dose-dependent decreases in circulating lymphocytes, with a slightly greater suppression of CD4+ versus CD8+ T cells. Therefore, CS-0777 would alter immune responses solely through activation of S1P1 without S1P3 modulation in humans, which could circumvent a bradycardia adverse effect, although the relationships associating selectivity of S1P1 to S1P3 with bradycardia in humans are not fully understood (12).Orally administrated CS-0777 is phosphorylated and rapidly reaches equilibrium with CS-0777-P as in the case of fingolimod (22), suggesting that the high kinase activity in blood is balanced by phosphatases. Therefore, identification of a phosphatase, the inactivating enzyme of an active metabolite, as well as identification of a kinase, the activating enzyme of a prodrug, are critical to fully understand the mechanism of action at the molecular level for both CS-0777 and fingolimod. Sphingosine kinase 2 (SPHK2) was identified as the major kinase of fingolimod (21, 28, 29) and lipid phosphate phosphatase 3 (LPP3) was reported to be a phosphatase for fingolimod-P dephosphorylation (30), although contribution of LPP3 in vivo has not been fully studied. In our previous work, we have identified CS-0777 kinases in human blood as fructosamine 3-kinase-related protein (FN3K-RP) and fructosamine 3-kinase (FN3K) (6), whereas the phosphatase of CS-0777-P had not been identified thus far.In this study, we have successfully identified alkaline phosphatase, tissue-nonspecific isozyme (ALPL) as the major CS-0777-P phosphatase candidate in the human kidney by proteomic correlation profiling. According to available information, this is the first report applying proteomic correlation profiling to enzyme classes other than kinases; similarly, we believe this to be first application of proteomic correlation profiling to human tissue extract, which therefore has opened up wide usage of proteomic correlation profiling for all types of enzyme identification.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号