首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   1篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有34条查询结果,搜索用时 218 毫秒
21.
To model human interleukin-6 (hIL-6) associated diseases, unique mice with transgenic overexpression of human IL-6 and reporter fluorescent protein EGFP in cells of macrophage-monocyte lineage were generated using loxP–Cre system. High level of hIL-6 production by macrophages and monocytes, as confirmed in vitro in primary culture of bone marrow-derived macrophages, in vivo resulted in early postnatal death in vivo, presumably, due to the effect of overexpression of hIL-6 on hematopoiesis.  相似文献   
22.
Effects of prenatal stress (daily 1-h-long immobilization of pregnant females at the 15th–21st days of pregnancy) on the formation of sex-related dimorphism of the turnover of noradrenaline (NA) and dopamine (DA) in the preoptic area (POA) of the brain and mediobasal hypothalamus (MBH) were studied in 10-day-old rats. Sex-related differences of the turnover of a functional NA pool in the POA and DA pool in the MBH were demonstrated in intact control rats: a higher rate of the monoamine turnover was observed in males. Prenatal stress abolished these sex-related differences and, at the same time, induced such differences in the DA turnover in the POA. It is supposed that prenatal stress-evoked early modifications of sex-related dimorphism of the catecholamine turnover in the brain can result in the development of remote disturbances in the neuroendocrine control of reproduction and adaptation.  相似文献   
23.
Hormonal and neurotransmitter environment of nondifferentiated cells in the developing brain determines many of gender-specific behavioural and neuroendocrine functions. Early postnatal and long-term effects of maternal stress or prenatal glucocorticoid on sex-related peculiarities of the brain morphology, biogenic monoamine turnover, testosterone metabolism, hypothalamic noradrenaline (NA) and adrenocortical responses to an acute stress were studied in Wistar rat offsprings. Maternal stress (1 h immobilization daily for gestational days 15–21) prevented development of sexual dimorphism in neuronal cell nuclei volumes in suprachiazmatic nucleus (SCN) in 10 day old pups. That was associated with a disappearance of male–female differences in NA and 5-hydroxytryptamine turnover in the preoptic area (POA) and dopamine (DA) turnover in the mediobasal hypothalamus (MBH) by decreasing them in male pups. Hydrocortisone acetate (5 mg daily during the last week of pregnancy) produced changes in NA turnover in the POA of males and females which were quite similar to those after maternal stress. Changes in aromatase and 5-reductase activities in the POA of male pups were quite opposite as affected by maternal stress or prenatal glucocorticoid. Sexual differences in 5-reductase activity in the MBH appeared due to its increase in prenatally stressed male pups. In contrast to adult males, in adult females maternal stress did not restrict hypothalamic NA and blood plasma corticosterone response to acute stress (1 h immobilization). Our findings on morphology and functions of gender-related developing brain areas stand in correlation with modifying effects of maternal stress and prenatal glucocorticoid on behavior and neuroendocrine regulations.  相似文献   
24.
Accumulation of rare earth elements in human bone within the lifespan   总被引:1,自引:0,他引:1  
For the first time, the contents of rare earth elements (REEs) in a rib bone of a healthy human were determined. The mean value of the contents of Ce, Dy, Er, Gd, La, Nd, Pr, Sm, Tb, and Yb (10 elements out of 17 total REEs), as well as the upper limit of means for Ho, Lu, Tm, and Y (4 elements) were measured in the rib bone tissue of 38 females and 42 males (15 to 55 years old) using inductively coupled plasma mass spectrometry (ICP-MS). We found age-related accumulation of REEs in the bone tissue of healthy individuals who lived in a non-industrial region. It was calculated that during a lifespan the content of REEs in a skeleton of non-industrial region residents may increase by one to two orders of magnitude. Using our results as indicative normal values and published data we estimated relative Gd accumulation in the bone tissue of patients according to magnetic resonance imaging with contrast agent and La accumulation in the bone tissue of patients receiving hemodialysis after treatment with lanthanum carbonate as a phosphate binder. It was shown that after such procedures contents of Gd and La in the bone tissue of patients are two to three orders of magnitude higher than normal levels. In our opinion, REEs incorporation may affect bone quality and health similar to other potentially toxic trace metals. The impact of elevated REEs content on bone physiology, biochemistry and morphology requires further investigation.  相似文献   
25.
The effect of age on 12 chemical element contents in intact prostate of 64 apparently healthy, 13-60-year-old men (mean age 36.5 years) was investigated by inductively coupled plasma atomic emission spectrometry. Mean values (M ± SΕΜ) for mass fraction (milligrams/kilogram, on dry weight basis) of Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, and Zn were: Ba 1.18 ± 0.12, Ca 2,178 ± 160, Cu 10.7 ± 0.9, Fe 122 ± 5, K 12,530 ± 360, Mg 1,100 ± 70, Na 10,470 ± 320, P 7,580 ± 300, S 8,720 ± 180, Sr 1.85 ± 0.28, and Zn 782 ± 97, respectively. The upper limit of mean content of V was ≤0.22 mg/kg. A tendency of age-related increase in Ca, Fe, Na, and Zn mass fraction as well an increase in Zn/Ba, Zn/Ca, Zn/Cu, Zn/Fe, Zn/K, Zn/Mg, Zn/Na, Zn/P, Zn/S, and Zn/Sr ratios in prostate was observed. A significant positive correlation was seen between the prostatic zinc and Ca, Cu, Fe, Mg, Na, and P contents.  相似文献   
26.
Catecholamine content was studied in hypothalamus of neonatal Wistar female rats treated with 4-hydroxyestradiol-17 (4-OH-E2) in a dose of 10 mg for 1-5 days of life. 4-OH-E2 induced a reliable increase in hypothalamic noradrenaline level in 24 h after the last injection, but not on the 7th, 10th or 12th postnatal days. There was no change in dopamine level. We have postulated a relationship between the increase in hypothalamic noradrenaline content induced by 4-OH-E2 and defeminization effects of 4-OH-E2 on the developing brain of female rats.  相似文献   
27.
Chromalveolates include photosynthetic and nonphotosynthetic (some plastid‐lacking) algae and protists that define a vast swath of eukaryotic diversity. These taxa are masters of gene acquisition through serial endosymbiosis (endosymbiotic gene transfer, EGT) and horizontal gene transfer (HGT). Understanding the contribution of these sources to nuclear genomes is key to elucidating chromalveolate evolution and to identifying suitable phylogenetic markers to place this lineage in the tree of life. Here we briefly review recent findings in our lab with regard to EGT and HGT in chromalveolates.  相似文献   
28.
Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.  相似文献   
29.
Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution.  相似文献   
30.
The effect of age and gender on major, minor, and trace element contents in the intact rib bone of 80 relatively healthy 15–55-year-old women and men was investigated. Contents or upper limit of contents of 16 chemical elements in the rib bone were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Mean values (M?±?SΕΜ) for the mass fraction of Ba, Ca, Cu, Fe, K, Li, Mg, Na, P, S, Sr, and Zn (milligram per kilogram of dry bone) were as follows: 2.54?±?0.16, 171,400?±?4,050, 1.35?±?0.22, 140?±?11, 1,874?±?71, 0.049?±?0.011, 2,139?±?38, 5,378?±?88, 75,140?±?1,660, 1,881?±?51, 291?±?20, and 92.8?±?1.5, respectively. The upper limits of contents of Al, B, Mn, and V were <7.20, <0.65, <0.36, and <0.03, respectively. Statistically significant tendency for the Ca, Mg, and P content to decrease with age was found in the human rib bone, regardless of gender. The mass fraction of Fe in the male rib bone increases with age. It was shown that higher Ca, Mg, Na, P, and Sr mass fractions as well as lower Fe content were typical of female ribs as compared to those in male ribs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号