首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   26篇
  335篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   9篇
  2015年   12篇
  2014年   14篇
  2013年   14篇
  2012年   28篇
  2011年   15篇
  2010年   17篇
  2009年   9篇
  2008年   23篇
  2007年   19篇
  2006年   15篇
  2005年   20篇
  2004年   18篇
  2003年   13篇
  2002年   23篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1987年   1篇
  1985年   3篇
  1983年   2篇
  1982年   4篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
  1958年   1篇
排序方式: 共有335条查询结果,搜索用时 0 毫秒
91.
92.
93.
We present a simple ordinary differential equation (ODE) model of the adaptive response to an osmotic shock in the yeast Saccharomyces cerevisiae. The model consists of two main components. First, a biophysical model describing how the cell volume and the turgor pressure are affected by varying extra-cellular osmolarity. The second component describes how the cell controls the biophysical system in order to keep turgor pressure, or equivalently volume, constant. This is done by adjusting the glycerol production and the glycerol outflow from the cell. The complete model consists of 4 ODEs, 3 algebraic equations and 10 parameters. The parameters are constrained from various literature sources and estimated from new and previously published absolute time series data on intra-cellular and total glycerol. The qualitative behaviour of the model has been successfully tested on data from other genetically modified strains as well as data for different input signals. Compared to a previous detailed model of osmoregulation, the main strength of our model is its lower complexity, contributing to a better understanding of osmoregulation by focusing on relationships which are obscured in the more detailed model. Besides, the low complexity makes it possible to obtain more reliable parameter estimates.  相似文献   
94.
Phosphodiesterase 1 (PDE1) modulates vascular tone and the development of tolerance to nitric oxide (NO)-releasing drugs in the systemic circulation. Any role of PDE1 in the pulmonary circulation remains largely uncertain. We measured the expression of genes encoding PDE1 isozymes in the pulmonary vasculature and examined whether or not selective inhibition of PDE1 by vinpocetine attenuates pulmonary hypertension and augments the pulmonary vasodilator response to inhaled NO in lambs. Using RT-PCR, we detected PDE1A, PDE1B, and PDE1C mRNAs in pulmonary arteries and veins isolated from healthy lambs. In 13 lambs, the thromboxane A(2) analog U-46619 was infused intravenously to increase mean pulmonary arterial pressure to 35 mmHg. Four animals received an intravenous infusion of vinpocetine at incremental doses of 0.3, 1, and 3 mg.kg(-1).h(-1). In nine lambs, inhaled NO was administered in a random order at 2, 5, 10, and 20 ppm before and after an intravenous infusion of 1 mg.kg(-1).h(-1) vinpocetine. Administration of vinpocetine did not alter pulmonary and systemic hemodynamics or transpulmonary cGMP or cAMP release. Inhaled NO selectively reduced mean pulmonary arterial pressure, pulmonary capillary pressure, and pulmonary vascular resistance index, while increasing transpulmonary cGMP release. The addition of vinpocetine enhanced pulmonary vasodilation and transpulmonary cGMP release induced by NO breathing without causing systemic vasodilation but did not prolong the duration of pulmonary vasodilation after NO inhalation was discontinued. Our findings demonstrate that selective inhibition of PDE1 augments the therapeutic efficacy of inhaled NO in an ovine model of acute chemically induced pulmonary hypertension.  相似文献   
95.
Mammalian cell membranes are composed of a complex array of glycerophospholipids and sphingolipids that vary in head-group and acyl-chain composition. In a given cell type, membrane phospholipids may amount to more than a thousand molecular species. The complexity of phospholipid and sphingolipid structures is most likely a consequence of their diverse roles in membrane dynamics, protein regulation, signal transduction and secretion. This review is mainly focused on two of the major classes of membrane phospholipids in eukaryotic organisms, sphingomyelins and phosphatidylcholines. These phospholipid classes constitute more than 50% of membrane phospholipids. Cholesterol is most likely to associate with these lipids in the membranes of the cells. We discuss the synthesis and distribution in the cell of these lipids, how they are believed to interact with each other, and what cellular consequences such interactions may have. We also include a discussion about findings in the recent literature regarding cholesterol/phospholipid interactions in model membrane systems. Finally, we look at the recent trends in computer and molecular dynamics simulations regarding phospholipid and cholesterol/phospholipid behavior in bilayer membranes.  相似文献   
96.
Over a period of four years, the seasonal periodicity of dominant phytoplankton species in a shallow, eutrophic Danish lake changed markedly. Cyanophytes prevailed during the summer period of all four years. In the first three years, species of Microcystis, Anabaena and Aphanothece dominated, whereas in the fourth year of investigation, these algae were replaced by Gloeotrichia echinulata (J. E. Smith) Richter and Aphanizomenon flos-aquae (L.) Ralfs. The most striking environmental differences in the fourth year as compared with the previous three years, were an increase in tranparency, from about 0.5 meter in 1989–1991 to more than 2 metres preceding the summer maximum in 1992, and a simultaneous occurrence of low oxygen concentrations. A collapse of the fish population was followed by an increased proportion of large Cladocerans in the zooplankton. Improved light conditions at the bottom and grazing pressure from large Cladocerans favoured growth of the large colony forming blue-green algae, Gloeotrichia echinulata and Aphanizomenon flos-aquae. These species germinate from resting spores in the sediment and are able to sustain some growth there before migration to the lake water. The transfer of algal biomass from the bottom sediment to the water phase was accompanied by a marked increase in concentrations of particulate phosphorus and nitrogen in the entire lake.  相似文献   
97.
Cell biology concerns the interactions between different cellular compartments and between the cell and the environment. The mechanisms of herpes simplex virus type-1 (HSV-1) envelopment and the transport of virus particles and HSV-1 glycoproteins have not been completely investigated. It is of interest to examine the formation of complete virus particles and the cellular distribution of viral glycoproteins correlated with microtubules. The illustration of these conditions by immunocytochemistry is best done by multiple labelling techniques in the same cell. Single-staining of neighbouring serial sections or two-face double-immunolabelling methods are not technically compatible with ultrathin cryosections. The results are reported here of a simultaneous, simple and reliable immunogold double-staining technique using primary antibodies of the same species in ultrathin cryosections. Compared to other inactivation procedures, phosphate-buffered 3% paraformaldehyde plus 2% glutaraldehyde for 2h at room temperature is an excellent and gentle method to destroy free anti-IgG binding sites on the antibodies and to prevent cross-labelling, which has proven necessary for obtaining reproducible results on cellular distribution of tubulin and viral glycoproteins gD-1 and gC-1.  相似文献   
98.
Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.  相似文献   
99.
Ehlers BK  Thompson J 《Oecologia》2004,141(3):511-518
Local modification of the soil environment by individual plants may affect the performance and composition of associated plant species. The aromatic plant Thymus vulgaris has the potential to modify the soil through leaching of water-soluble compounds from leaves and litter decomposition. In southern France, six different thyme chemotypes can be distinguished based on the dominant monoterpene in the essential oil, which is either phenolic or non-phenolic in structure. We examine how soils from within and away from thyme patches in sites dominated by either phenolic or non-phenolic chemotypes affect germination, growth and reproduction of the associated grass species Bromus erectus. To do so, we collected seeds of B. erectus from three phenolic and three non-phenolic sites. Seeds and seedlings were grown on soils from these sites in a reciprocal transplant type experiment in the glasshouse. Brome of non-phenolic origin performed significantly better on its home soil than on soil from a different non-phenolic or a phenolic site. This response to local chemotypes was only observed on soil collected directly underneath thyme plants and not on soil in the same site (<5 m away) but where no thyme plants were present. This is preliminary evidence that brome plants show an adaptive response to soil modifications mediated by the local thyme chemotypes. Reproductive effort was consistently higher in brome of phenolic origin than in brome of non-phenolic origin (on both thyme- and grass-soil), indicating that life-history variation may be related to environmental factors which also contribute to the spatial differentiation of thyme chemotypes. Moreover, we found that brome growing on thyme-soil in general was heavier than when growing on grass-soil, regardless of the origin of the brome plants. This is concordant with thyme-soil containing higher amounts of organic matter and nitrogen than grass-soil. Our results indicate that patterns of genetic differentiation and local adaptation may modify competitive interactions and possible facilitation effects in natural communities.  相似文献   
100.
BACKGROUND/AIM: Oxytocin (OT) has a wide range of effects throughout the body. However, the role of OT on the gastrointestinal (GI) tract has to be settled. So far, the few studies performed reveal no conclusive results. The aim of this study was to examine the expression of OT and OT-receptor mRNA in the human GI tract. MATERIAL AND METHODS: Full-thickness biopsies from all segments of the GI tract and the gallbladder were collected during operations at the Department of Surgery, Malm? University Hospital. Biopsies were taken and put immediately into fluid nitrogen and stored at -70 degrees C until total RNA was extracted after mechanical tissue homogenization. Subsequently, poly A(+) mRNA was isolated from the total RNA extract using an automated nucleic acid extractor and converted into single-stranded cDNA. PCR amplifications were carried out using gene-specific OT and OT-receptor primers. The specificity of the PCR amplicons was further confirmed by Southern blot analyses using gene specific OT and OT-receptor hybridization probes. RESULTS: Expression of OT and OT-receptor mRNA was detected in nearly all segments of the GI tract analyzed. In most of the biopsy specimens analyzed, co-expression of both OT and OT-receptor mRNA appeared to take place. CONCLUSION: The present study demonstrates that OT and OT-receptor mRNAs are expressed throughout the GI tract. A possible physiological and/or pathophysiological role of OT and OT-receptor expression in the human GI tract and the cellular location of its expression remain to be shown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号