首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1129篇
  免费   103篇
  2021年   17篇
  2020年   8篇
  2019年   17篇
  2018年   23篇
  2017年   17篇
  2016年   27篇
  2015年   46篇
  2014年   39篇
  2013年   53篇
  2012年   70篇
  2011年   88篇
  2010年   56篇
  2009年   46篇
  2008年   52篇
  2007年   77篇
  2006年   58篇
  2005年   74篇
  2004年   59篇
  2003年   55篇
  2002年   52篇
  2001年   16篇
  2000年   9篇
  1999年   14篇
  1998年   17篇
  1997年   21篇
  1996年   10篇
  1995年   9篇
  1993年   11篇
  1992年   10篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   12篇
  1984年   10篇
  1983年   8篇
  1982年   8篇
  1981年   8篇
  1980年   5篇
  1977年   8篇
  1974年   5篇
  1973年   4篇
  1972年   5篇
  1971年   7篇
  1969年   6篇
  1968年   5篇
  1965年   4篇
  1960年   4篇
排序方式: 共有1232条查询结果,搜索用时 31 毫秒
41.
Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca2+ sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca2+-binding EF hands. Ca2+ stores are refilled through a process called store-operated Ca2+ entry (SOCE). Upon Ca2+-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca2+ entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca2+ sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca2+ level in TAM cells and a dysregulation of intracellular Ca2+ homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function.  相似文献   
42.
Drug resistance is a major challenge in antimalarial chemotherapy. In addition, a complete cure of malaria requires intervention at various stages in the development of the parasite within the host. There are only a few antimalarials that target the liver stage of the Plasmodium species which is an essential part of the life cycle of the malarial parasite. We report a series of antimalarial 3,5-bis(benzylidene)-4-piperidones and related N-acyl analogs 15, a number of which exhibit potent in vitro growth-inhibiting properties towards drug-sensitive D6 and drug-resistant C235 strains of Plasmodium falciparum as well as inhibiting the liver stage development of the malarial life cycle. The compounds 2b (IC50: 165 ng/mL), 3b (IC50: 186 ng/mL), 5c (IC50: 159 ng/mL) and 5d (IC50: 93.5 ng/mL) emerged as lead molecules that inhibit liver stage Plasmodium berghei and are significantly more potent than chloroquine (IC50: >2000 ng/mL) and mefloquine (IC50: >2000 ng/mL) in this screen. All the compounds that showed potent inhibitory activity against the P. berghei liver stage were nontoxic to human HepG2 liver cells (IC50: >2000 ng/mL). The compounds 5a and 5b exhibit comparable metabolic stability as chloroquine and mefloquine in human plasma and the most potent compound 5d demonstrated suitable permeability characteristics using the MDCK monolayer. These results emphasize the value of 3,5-bis(benzylidene)-4-piperidones as novel antimalarials for further drug development.  相似文献   
43.
BackgroundAntiretroviral-based interventions for HIV-1 prevention, including antiretroviral therapy (ART) to reduce the infectiousness of HIV-1 infected persons and pre-exposure prophylaxis (PrEP) to reduce the susceptibility of HIV-1 uninfected persons, showed high efficacy for HIV-1 protection in randomized clinical trials. We conducted a prospective implementation study to understand the feasibility and effectiveness of these interventions in delivery settings.ConclusionsIntegrated delivery of time-limited PrEP until sustained ART use in African HIV-1-serodiscordant couples was feasible, demonstrated high uptake and adherence, and resulted in near elimination of HIV-1 transmission, with an observed HIV incidence of <0.5% per year compared to an expected incidence of >5% per year.  相似文献   
44.
One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.  相似文献   
45.
Plasmodium vivax is the most widely distributed human parasite and the main cause of human malaria outside the African continent. However, the knowledge about the genetic variability of P. vivax is limited when compared to the information available for P. falciparum. We present the results of a study aimed at characterizing the genetic structure of P. vivax populations obtained from pregnant women from different malaria endemic settings. Between June 2008 and October 2011 nearly 2000 pregnant women were recruited during routine antenatal care at each site and followed up until delivery. A capillary blood sample from the study participants was collected for genotyping at different time points. Seven P. vivax microsatellite markers were used for genotypic characterization on a total of 229 P. vivax isolates obtained from Brazil, Colombia, India and Papua New Guinea. In each population, the number of alleles per locus, the expected heterozygosity and the levels of multilocus linkage disequilibrium were assessed. The extent of genetic differentiation among populations was also estimated. Six microsatellite loci on 137 P. falciparum isolates from three countries were screened for comparison. The mean value of expected heterozygosity per country ranged from 0.839 to 0.874 for P. vivax and from 0.578 to 0.758 for P. falciparum. P. vivax populations were more diverse than those of P. falciparum. In some of the studied countries, the diversity of P. vivax population was very high compared to the respective level of endemicity. The level of inter-population differentiation was moderate to high in all P. vivax and P. falciparum populations studied.  相似文献   
46.
Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D.  相似文献   
47.
48.
49.
50.
The electrospraying technique provides nano and microparticles that can be used as drug delivery systems. The aims of this study were, firstly, to optimize the influent parameters of electrospraying for the manufacture of a Bosentan (BOS) nanoparticulate platform, and secondly, to evaluate its physicochemical properties and in vitro biopharmaceutical behavior. Particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transformed Infrared spectroscopy (FTIR). Drug loading, encapsulation efficiency and kinetic dissolution were determined. Additionally, Bosentan release assays at 24 and 72 h were performed in vitro to evaluate biopharmaceutical properties of nano-scaffolds by diffusion technique through dialysis bag. The nanostructures had heterogeneous sizes predominantly smaller than 550 nm and they were semicrystalline according to PXRD, indicating a partial amorphization of BOS during the encapsulation in the polymer matrix. FT-IR and DSC showed an absence of chemical interactions between BOS and ε-Polycaprolactone (PCL), suggesting that both components behaved as a physical mixture in these particles. The drug loading was 25.98%, and the encapsulation efficiency was 58.51%. Additionally, the release assays showed an extended and controlled release of BOS, in comparison to non-encapsulated BOS. These data also showed to fit with the Cubic Root kinetic dissolution. As a conclusion, we demonstrate that the use of electrospraying for the manufacture of BOS (or similar drugs) controlled release nanoplatforms would represent an interesting contribution in the development of new therapeutic alternatives for the treatment of pathologies such as pulmonary hypertension and other related diseases. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2748, 2019.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号