首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1831篇
  免费   85篇
  2022年   9篇
  2021年   20篇
  2020年   13篇
  2019年   18篇
  2018年   22篇
  2017年   18篇
  2016年   44篇
  2015年   57篇
  2014年   60篇
  2013年   94篇
  2012年   117篇
  2011年   98篇
  2010年   71篇
  2009年   66篇
  2008年   107篇
  2007年   124篇
  2006年   91篇
  2005年   134篇
  2004年   115篇
  2003年   104篇
  2002年   105篇
  2001年   31篇
  2000年   33篇
  1999年   36篇
  1998年   26篇
  1997年   25篇
  1996年   27篇
  1995年   24篇
  1994年   20篇
  1993年   16篇
  1992年   14篇
  1991年   14篇
  1990年   13篇
  1989年   16篇
  1988年   12篇
  1987年   7篇
  1986年   14篇
  1985年   13篇
  1984年   14篇
  1983年   12篇
  1982年   8篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1974年   5篇
  1971年   3篇
排序方式: 共有1916条查询结果,搜索用时 15 毫秒
151.
Avian influenza viruses belong to the genus influenza A virus of the family Orthomyxoviridae. The influenza virus consists of eight segmented minus stranded RNA that encode 11 known proteins. Among the 11 viral proteins, NS1 (non-structural protein 1, encoded on segment 8) has been implicated in the regulation of several important intra-cellular functions.In this report, we investigated the functional interaction of NS1 with serine threonine kinase Akt, a core intra-cellular survival regulator. In co-immunoprecipitation assays and GST pull-down assays, NS1 directly interacted with Akt. The interaction was mediated primarily through the Akt-PH (Pleckstrin Homology) domain and the RNA-binding domain of NS1. NS1 preferentially interacted with phosphorylated Akt, but not with non-phosphorylated Akt. Functionally, the NS1-Akt interaction enhanced Akt activity both in the intra-cellular context and in in vitro Akt kinase assays. Confocal microscopic analysis revealed that phosphorylated Akt interacted with NS1 during the interphase of the cell cycle predominantly within the nucleus. Finally, mass spectrometric analysis demonstrated the position at Thr215 of NS1 protein is primary phosphorylation target site through Akt activation. The results together supported the functional importance of influenza virus NS1 with Akt, a core intra-cellular survival regulator.  相似文献   
152.
Ibicella lutea and Proboscidea louisiana, both of the Martyniaceae family, are known for rich glandular trichomes on their leaves and stems. Chemical investigations of the glandular trichome exudates on leaves of the two plants furnished three types of secondary metabolites, glycosylated fatty acids, glycerides (2-O-(3,6-diacetyloxyfattyacyl)glycerols and 2-O-(3-acetyloxyfattyacyl)glycerols) and dammarane triterpenes. The glycosylated fatty acids from I. lutea were determined to be 6(S)-(6-O-acetyl-β-d-glucopyranosyloxy)-octadecanoic acid (1A), -eicosanoic acid (1B) and -docosanoic acid (1C), as well as their respective deacetyl congeners (2A, 2B and 2C), whereas P. louisiana furnished 8(S)-(6-O-acetyl-β-d-glucopyranosyloxy)-eicosanoic acid (3A) and -docosanoic acid (3B) and their respective deacetyl congeners (4A and 4B), together with 2B. Both plants contained 12 identical 2-O-[(3R,6S)-3,6-diacetyloxyfattyacyl]glycerols (5A-L), in which the fatty acyl moieties contained between 17 and 21 carbon atoms. The corresponding mono-acetyloxy compounds, 2-O-[(3R)-3-acetyloxyfattyacyl]glycerols (6AL) were detected in both plants. Among these glycerides, ten compounds (5A, 5C, 5F, 5H, 5K, 6A, 6C, 6F, 6H and 6K) had iso-fattyacyl structures and four (5E, 5J, 6E and 6J) had anteiso-fattyacyl structures. A previously unknown dammarane triterpene, betulatriterpene C 3-acetate (7), was isolated together with three known dammarane triterpenes, 24-epi-polacandrin 1,3-diacetate (8), betulatriterpene C (9) and 24-epi-polacandrin 3-acetate (10) from I. lutea, whereas 12 dammarane triterpenes, named probosciderols A–L (1223), and the known compound betulafolienetriol (11) were isolated from P. louisiana. The structures of these compounds were elucidated by spectroscopic analysis including 2D-NMR techniques and chemical transformations. The 6-O-acetylglucosyloxy-fatty acids 1AC (42%) and the dammarane triterpenes 710 (31%) were the two most abundant constituents in the glandular trichome exudate of I. lutea, whereas the dammarane triterpenes 1123 (47%) and the glucosyloxy-fatty acids (4A, 4B and 2B) (38%) were the most abundant constituents in the glandular trichome exudate of P. louisiana.  相似文献   
153.
To examine whether silica bodies are essential for silicon-enhanced growth of rice seedlings, we investigated the response of rice, Oryza sativa L., to silicon treatment. Silicic acid treatment markedly enhanced the SPAD (soil plant analytical development) values of leaf blades and the growth and development of leaves and lateral roots in cvs. Hinohikari and Oochikara, and a low-silicon mutant, lsi1. Combination of ethanol–benzene displacement and staining with crystal violet lactone enabled more detailed histochemical analysis to visualize silica bodies in the epidermis under bright-field microscopy. Supply of silicon induced the development of motor cells and silica bodies in epidermal cells in Hinohikari and Oochikara but not or marginal in lsi1. X-ray analytical microscopy detected silicon specifically in the leaf sheath, the outermost part of the stem, and the leaf blade midrib, suggesting that silicon is distributed to tissues involved in maintaining rigidity of the plant to prevent lodging, rather than being passively deposited in growing tissues. Silicon supplied at high dose accumulated in all rice seedlings and enhanced growth and SPAD values with or without silica body formation. Silicon accumulated in the cell wall may play an important physiological role different from that played by the silica deposited in the motor cell and silica bodies.  相似文献   
154.

Introduction  

Microvasculopathy is one of the characteristic features in patients with systemic sclerosis (SSc), but underlying mechanisms still remain uncertain. In this study, we evaluated the potential involvement of monocytic endothelial progenitor cells (EPCs) in pathogenic processes of SSc vasculopathy, by determining their number and contribution to blood vessel formation through angiogenesis and vasculogenesis.  相似文献   
155.
156.
A spray administration of ivermectin was evaluated for the treatment of pinworm infection in mice. In this study, a spray of 0.1% ivermectin injectable solution over the entire cage once a week, for three consecutive weeks (one cycle treatment), was effective in eradicating both Syphacia obvelata and Aspiculuris tetraptera from mice under experimental conditions. In addition, no acute toxicity was observed in 105 mothers or 687 neonates treated with ivermectin, indicating that ivermectin does not affect murine reproduction. Finally, we attempted to eradicate pinworms from infected mice in our institute using this method. Two cycles of treatment were administered, with a two-week pause between cycles, resulting in complete eradication for at least one year. Treating mouse colonies with spray ivermectin is inexpensive, safe, requires very little labor and is very effective at eradicating pinworms from mice.  相似文献   
157.
Little is known about how synaptic activity is modulated in the central nervous system. We have identified SCRAPPER, a synapse-localized E3 ubiquitin ligase, which regulates neural transmission. SCRAPPER directly binds and ubiquitinates RIM1, a modulator of presynaptic plasticity. In neurons from Scrapper-knockout (SCR-KO) mice, RIM1 had a longer half-life with significant reduction in ubiquitination, indicating that SCRAPPER is the predominant ubiquitin ligase that mediates RIM1 degradation. As anticipated in a RIM1 degradation defect mutant, SCR-KO mice displayed altered electrophysiological synaptic activity, i.e., increased frequency of miniature excitatory postsynaptic currents. This phenotype of SCR-KO mice was phenocopied by RIM1 overexpression and could be rescued by re-expression of SCRAPPER or knockdown of RIM1. The acute effects of proteasome inhibitors, such as upregulation of RIM1 and the release probability, were blocked by the impairment of SCRAPPER. Thus, SCRAPPER has an essential function in regulating proteasome-mediated degradation of RIM1 required for synaptic tuning.  相似文献   
158.
The fate of calicivirus in oysters in a 10-day depuration was assessed. The norovirus gene was persistently detected from artificially contaminated oysters during the depuration, whereas feline calicivirus in oysters was promptly eliminated. The prolonged observation of norovirus in oysters implies the existence of a selective retention mechanism for norovirus within oysters.  相似文献   
159.
160.
Proteases can catalyze both peptide bond cleavage and formation, yet the hydrolysis reaction dominates in nature. This presents an interesting challenge for the biosynthesis of backbone cyclized (circular) proteins, which are encoded as part of precursor proteins and require post-translational peptide bond formation to reach their mature form. The largest family of circular proteins are the plant-produced cyclotides; extremely stable proteins with applications as bioengineering scaffolds. Little is known about the mechanism by which they are cyclized in vivo but a highly conserved Asn (occasionally Asp) residue at the C terminus of the cyclotide domain suggests that an enzyme with specificity for Asn (asparaginyl endopeptidase; AEP) is involved in the process. Nicotiana benthamiana does not endogenously produce circular proteins but when cDNA encoding the precursor of the cyclotide kalata B1 was transiently expressed in the plants they produced the cyclotide, together with linear forms not commonly observed in cyclotide-containing plants. Observation of these species over time showed that in vivo asparaginyl bond hydrolysis is necessary for cyclization. When AEP activity was suppressed, either by decreasing AEP gene expression or using a specific inhibitor, the amount of cyclic cyclotide in the plants was reduced compared with controls and was accompanied by the accumulation of extended linear species. These results suggest that an AEP is responsible for catalyzing both peptide bond cleavage and ligation of cyclotides in a single processing event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号