首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1967篇
  免费   128篇
  国内免费   4篇
  2021年   10篇
  2020年   11篇
  2019年   14篇
  2018年   20篇
  2017年   27篇
  2016年   39篇
  2015年   47篇
  2014年   54篇
  2013年   106篇
  2012年   68篇
  2011年   114篇
  2010年   63篇
  2009年   65篇
  2008年   90篇
  2007年   100篇
  2006年   109篇
  2005年   134篇
  2004年   115篇
  2003年   119篇
  2002年   106篇
  2001年   18篇
  2000年   31篇
  1999年   33篇
  1998年   42篇
  1997年   49篇
  1996年   31篇
  1995年   24篇
  1994年   26篇
  1993年   26篇
  1992年   33篇
  1991年   26篇
  1990年   20篇
  1989年   21篇
  1988年   18篇
  1987年   11篇
  1986年   19篇
  1985年   23篇
  1984年   25篇
  1983年   25篇
  1982年   28篇
  1981年   18篇
  1980年   13篇
  1979年   11篇
  1978年   13篇
  1977年   12篇
  1976年   23篇
  1974年   12篇
  1973年   7篇
  1972年   7篇
  1971年   6篇
排序方式: 共有2099条查询结果,搜索用时 15 毫秒
141.
The c-Jun N-terminal kinases (JNKs) are a subfamily of the mitogen-activated protein kinases (MAPKs). The JNKs are encoded by three separate genes (jnk1, jnk2, and jnk3), which are spliced alternatively to create 10 JNK isoforms that are either p46 or p54 in size. In this study, we found that the p52 form of JNK emerged in human leukemia MOLT-4 or U937 cells following X-irradiation or heat treatment. The accumulation of p52 coincided with the reduction of p54 JNK. On the other hand, the amounts of p46 JNK did not change by X-irradiation. Induction of the p52 form of JNK also paralleled the appearance of the active form of caspase-3 and was suppressed by a caspase-specific inhibitor, Ac-DEVD-CHO, but not by Ac-YVAD-CHO. In vitro cleavage assays indicated that recombinant human JNK1beta2 and JNK2beta2 were cleaved by caspase-3, and that the mutation of aspartic acid at position 413 of JNK1beta2 or 410 of JNK2beta2 to alanine abolished the cleavage. Altogether, our results demonstrated that p54 JNKs, at least JNK1beta2 and JNK2beta2, were new selective targets of caspases in JNK splicing variants, and suggested that the p52 form could serve as a marker of apoptosis.  相似文献   
142.
In germ cells, the function of which is to form the next generation, apoptotic cell death occurs during development, as in the case of somatic cells. In this study, we show that Bcl-x knockout heterozygous (Bcl-x(+/-)) mice exhibit severe defects in male germ cells during development. A substantial increase in apoptosis of male germ cells occurs at around embryonic day 13.5 (E13.5) in Bcl-x(+/-) embryos, leading to hypoplasia of postnatal testes and reduced fertility. On the other hand, female germ cells at the same stages do not show discernible differences between wild-type and Bcl-x(+/-) embryos. This phenotype of Bcl-x haploinsufficiency shows that regulation of apoptosis becomes different between the sexes at around the onset of sex differentiation. Through this study, we found that, in wild-type embryos, (1) apoptosis is much more frequent (approximately 10 times) in the male than in female germ cells, and (2) expression of Bcl-xL, but not that of Bax, is higher in female than in male germ cells, at around E13.5. Male fetal germ cells, cultured with gonadal somatic cells in vitro, showed higher frequencies of apoptosis than those cultured without gonadal somatic cells. On the other hand, in the absence of gonadal somatic cells, both male and female fetal germ cells in vitro showed similar frequencies of apoptosis to female fetal germ cells in vivo. Therefore, male germ cell apoptosis, of which the default pathway is similar to that of the female, is likely to be influenced by male gonadal environments.  相似文献   
143.
Abstract.— We used partial sequences of the cytochrome b mitochondrial DNA (mtDNA) gene, obtained from 76 individuals representing 45 populations of Iberian Salamandra salamandra plus 15 sequences of additional species of Salamandra and related genera, to investigate contact zones. These zones, identified by earlier allozymic and morphological analyses, are between populations of viviparous (S. s. bernardezi and S. s. fastuosa ) and ovoviviparous (S. s. gallaica and S. s. terrestris ) salamanders. The distribution of mtDNA and nuclear markers is mostly concordant at one contact zone (between S. s. gallaica and S. s. bernardezi ), but at another (between S. s. fastuosa and S. s. terrestris ) the markers are offset by about 250 km. The observed geographic variation fits a model of mtDNA capture. Among the potential mechanisms responsible for such discordance we favor a combination of range shifts due to climatic fluctuations and biased genetic admixture across moving contact zones. We apply our findings to the issue of possible homoplasy in the evolution of viviparity and conclude that viviparity likely arose only once within S. salamandra .  相似文献   
144.
Thylakoid membranes are crucial to photosynthesis in cyanobacteria and plants. In cyanobacteria, genetic modification of membrane lipid composition strongly influences cold tolerance and susceptibility to photoinhibition. We have used fluorescence recovery after photobleaching to measure the diffusion of a lipid-soluble fluorescent marker in cells of the cyanobacterium Synechococcus sp. PCC 7942. We have compared the wild-type strain with a transformant with an increased level of fatty acid unsaturation. The transformant showed a six-fold increase in the diffusion coefficient for the fluorescent marker at growth temperature. This is the first direct measurement of lipid diffusion in a photosynthetic membrane.  相似文献   
145.
146.
A numerical simulation model was constructed for electrochemical cultivation of iron oxidizing bacterium, Thiobacillus ferrooxidans, based on Monod's dual limitation equation. In this model, two limiting factors were examined, low supply of Fe(II) ion and dissolved oxygen, from empirical viewpoints. The simulation model was constructed taking into consideration the energy balance based on the amount of the electronic flow from the electrode to bacteria via an iron ion, and then to oxygen. The model consisted of a logarithmic bacterial growth phase during the first three days, followed by a plateau and growth limitation thereafter. The predicted results were in agreement with the actual growth under electrochemical cultivation. It was predicted the growth limiting factor would be changed from insufficient supply of Fe(II) ions to that of oxygen by decreasing the value of oxygen transfer constant K, which correlated with the aeration rate. The optimum aeration rate was determined for the ideal electrochemical cultivation. The algorithm described here can be used in any electrochemical cultivation by modifying the parameters for each system.  相似文献   
147.
148.
Cell cycle checkpoints and apoptosis function as surveillance mechanisms in somatic tissues. However, some of these mechanisms are lacking or are restricted during the preimplantation stage. Previously, we reported the presence of a novel Trp53-dependent S-phase checkpoint that suppresses pronuclear DNA synthesis in mouse zygotes fertilized with X-irradiated sperm (sperm-irradiated zygotes) (Shimura et al., Mol. Cell. Biol. 22, 2220-2228, 2002). Here we studied the role of the Trp53-dependent S-phase checkpoint in the early stage of development of sperm-irradiated zygotes. In the Trp53(+/+) genetic background, all of the sperm-irradiated zygotes cleaved successfully to the two-cell stage despite the fact that half of them carried a sub-2N amount of DNA. These zygotes progressed normally to the eight-cell stage and then implanted, but the subsequent fetal development was suppressed in a dose-dependent manner. In contrast, sperm-irradiated Trp53(-/-) embryos lacking an S-phase checkpoint exhibited an abnormal segregation of chromosomes at the first cleavage, even though they carried an apparently normal 2N amount of DNA. They were morphologically abnormal with numerous micronuclei, and they degenerated before reaching the eight-cell stage. As a consequence, no implants were observed for sperm-irradiated Trp53(-/-) embryos. These results suggest that the Trp53-dependent S-phase checkpoint is a surveillance mechanism involved in the repair of chromosome damage and ensures the preimplantation-stage development of sperm-irradiated embryos.  相似文献   
149.
PYP (photoactive yellow protein) is a photoreceptor protein, which is activated upon photo-isomerization of the p-coumaric acid chromophore and is inactivated as the chromophore is thermally back-isomerized within a second (in PYP(M)-to-PYP(dark) conversion). Here we have examined the mechanism of the rapid thermal isomerization by analyzing mutant PYPs of Met100, which was previously shown to play a major role in facilitating the reaction [Devanathan, S. et al. (1998) Biochemistry 37, 11563-11568]. The mutation to Lys, Leu, Ala, or Glu decelerated the dark state recovery by one to three orders of magnitude. By evaluating temperature-dependence of the kinetics, it was found that the retardation resulted unequivocally from elevations of activation enthalpy (DeltaH( double dagger )) but not the other parameters such as activation entropy or heat capacity changes. Another effect exerted by the mutations was an up-shift of the apparent pK(a) of the chromophore [the pK(a) of a titratable group (X) that controls the pK(a) of the chromophore] in the PYP(M)-decay process. The pK(a) up-shift and the DeltaH( double dagger ) elevation show an approximately linear correlation. We, therefore, postulate that the role of Met100 is to reduce the energy barrier of the PYP(M)-decay process by an indirect interaction through X and that the process is thereby facilitated.  相似文献   
150.
Light-activation of the PAS domain protein photoactive yellow protein (PYP) is believed to trigger a negative phototactic response in the phototropic bacterium Halorhodospira halophila. To investigate transient conformational changes of the PYP photocycle, we utilized the PYP mutant M100L that displays an increased lifetime of the putative signaling-state photointermediate PYP(M) by 3 orders of magnitude, as previously reported for the M100A mutant [Devanathan, S., Genick, U. K., Canestrelli, I. L., Meyer, T. E., Cusanovich, M. A., Getzoff, E. D., and Tollin, G. Biochemistry (1998) 37, 11563-11568]. The FTIR difference spectrum of PYP(M) and the ground state of M100L demonstrated extensive peptide-backbone structural changes as observed in the FTIR difference spectrum of the wild-type protein and PYP(M). The conformational change investigated by CD spectroscopy in the far-UV region showed reduction of the alpha-helical content by approximately 40%, indicating a considerable amount of changes in the secondary structure. The optical activity of the p-coumaric acid chromophore completely vanished upon PYP(M) in contrast to the dark state, indicating deformation of the binding pocket structure in PYP(M). The tertiary structural changes were further monitored by small-angle X-ray scattering measurements, which demonstrated a significant increase of the radius of gyration of the molecule by approximately 5% in PYP(M). These structural changes were reversed concomitantly with the chromophore anionization upon the dark state recovery. The observed changes of the quantities provided a more vivid view of the structural changes of the mutant PYP in going from PYP(M) to PYP(dark), which can be regarded as a process of folding of the secondary and the tertiary structures of the "PAS" domain structure, coupled with the p-coumaric acid chromophore deprotonation and isomerization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号