首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2910篇
  免费   149篇
  3059篇
  2022年   16篇
  2021年   25篇
  2020年   16篇
  2019年   26篇
  2018年   33篇
  2017年   42篇
  2016年   61篇
  2015年   89篇
  2014年   101篇
  2013年   166篇
  2012年   163篇
  2011年   166篇
  2010年   119篇
  2009年   98篇
  2008年   199篇
  2007年   175篇
  2006年   193篇
  2005年   177篇
  2004年   171篇
  2003年   180篇
  2002年   183篇
  2001年   68篇
  2000年   53篇
  1999年   49篇
  1998年   43篇
  1997年   47篇
  1996年   26篇
  1995年   29篇
  1994年   12篇
  1993年   22篇
  1992年   24篇
  1991年   22篇
  1990年   10篇
  1989年   17篇
  1988年   16篇
  1987年   23篇
  1986年   16篇
  1985年   18篇
  1984年   17篇
  1983年   15篇
  1982年   17篇
  1981年   14篇
  1980年   20篇
  1979年   12篇
  1978年   12篇
  1977年   10篇
  1976年   11篇
  1973年   6篇
  1970年   4篇
  1969年   6篇
排序方式: 共有3059条查询结果,搜索用时 0 毫秒
41.
42.
43.
The anomeric structure of glycosphingolipids significantly influences their activity to stimulate natural killer T cells. In this study the chemical structure of the galacturonosyl-ceramide in Sphingomonas yanoikuyae, designated GSL-1'sy, was re-examined to prove the anomeric structure of the Dgalacturonic acid (GalA) in the lipid, which was reported as beta-configuration by Naka et al., but was suggested as alpha-configuration in our preliminary study. GSL-1'sy was purified from the bacterial cells with the same procedure as Naka et al. The 1H-NMR analysis of GSL-1'sy revealed that the coupling constant of the anomeric proton of GalA was 3.0 Hz, indicating that GalA in GSL-1'sy is alpha-anomer, the configuration active for the stimulation of natural killer T cells.  相似文献   
44.
Rad51 protein controls Rad52-mediated DNA annealing   总被引:1,自引:0,他引:1  
In Saccharomyces cerevisiae, Rad52 protein plays an essential role in the repair of DNA double-stranded breaks (DSBs). Rad52 and its orthologs possess the unique capacity to anneal single-stranded DNA (ssDNA) complexed with its cognate ssDNA-binding protein, RPA. This annealing activity is used in multiple mechanisms of DSB repair: single-stranded annealing, synthesis-dependent strand annealing, and cross-over formation. Here we report that the S. cerevisiae DNA strand exchange protein, Rad51, prevents Rad52-mediated annealing of complementary ssDNA. Efficient inhibition is ATP-dependent and involves a specific interaction between Rad51 and Rad52. Free Rad51 can limit DNA annealing by Rad52, but the Rad51 nucleoprotein filament is even more effective. We also discovered that the budding yeast Rad52 paralog, Rad59 protein, partially restores Rad52-dependent DNA annealing in the presence of Rad51, suggesting that Rad52 and Rad59 function coordinately to enhance recombinational DNA repair either by directing the processed DSBs to repair by DNA strand annealing or by promoting second end capture to form a double Holliday junction. This regulation of Rad52-mediated annealing suggests a control function for Rad51 in deciding the recombination path taken for a processed DNA break; the ssDNA can be directed to either Rad51-mediated DNA strand invasion or to Rad52-mediated DNA annealing. This channeling determines the nature of the subsequent repair process and is consistent with the observed competition between these pathways in vivo.  相似文献   
45.
46.
The heterobasidiomycetous yeastRhodotorula glutinis was able to grow in medium containing a high concentration of LiCl. This character ofR. glutinis was presumed to be attributable to its ability to incorporate [14C]-adenine and [14C]-leucine into nucleic acids and proteins, respectively, in the presence of LiCl. Intracellular levels of Li+ and Cl ions, production and accumulation of glycerol as an osmoregulator, and respiration in the LiCl-stressed condition were almost the same in the tolerant yeastR. glutinis and the sensitive yeastRhodosporidium sphaerocarpum.  相似文献   
47.
Summary Gene conversion - apparently non-reciprocal transfer of sequence information between homologous DNA sequences - has been reported in various organisms. Frequent association of gene conversion with reciprocal exchange (crossing-over) of the flanking sequences in meiosis has formed the basis of the current view that gene conversion reflects events at the site of interaction during homologous recombination. In order to analyze mechanisms of gene conversion and homologous recombination in an Escherichia coli strain with an active RecF pathway (recBC sbcBC), we first established in cells of this strain a plasmid carrying two mutant neo genes, each deleted for a different gene segment, in inverted orientation. We then selected kanamycin-resistant plasmids that had reconstituted an intact neo + gene by homologous recombination. We found that all the neo + plasmids from these clones belonged to the gene-conversion type in the sense that they carried one neo + gene and retained one of the mutant neo genes. This apparent gene conversion was, however, only very rarely accompanied by apparent crossing-over of the flanking sequences. This is in contrast to the case in a rec + strain. or in a strain with an active RecE pathway (recBC sbcA). Our further analyses, especially comparisons with apparent gene conversion in the rec + strain, led us to propose a mechanism for this biased gene conversion. This successive half crossing-over model proposes that the elementary recombinational process is half crossing;-over in the sense that it generates only one recombinant DNA duplex molecule, and leaves one or two free end(s), out of two parental DNA duplexes. The resulting free end is, the model assumes, recombinogenic and frequently engages in a second round of half crossing-over with the recombinant duplex. The products resulting from such interaction involving two molecules of the plasmid would be classified as belonging to the gene-conversion type without crossing-over. We constructed a dimeric molecule that mimics the intermediate form hypothesized in this model and introduced it into cells. Biased gene conversion products were obtained in this reconstruction experiment. The half crossing-over mechanism can also explain formation of huge linear multimers of bacterial plasmids, the nature of transcribable recombination products in bacterial conjugation, chromosomal gene conversion not accompanied by flanking exchange (like that in yeast mating-type switching), and antigenic variation in microorganisms.  相似文献   
48.
49.
We have analyzed the ranging patterns of the Mimikire group (M group) of chimpanzees in the Mahale Mountains National Park, Tanzania. During 16 years, the chimpanzees moved over a total area of 25.2 or 27.4 km2, as estimated by the grid-cell or minimum convex polygon (MCP) methods, respectively. Annually, the M group used an average of 18.4 km2, or approximately 70 %, of the total home-range area. The chimpanzees had used 80 % of their total home range after 5 years and 95 % after 11 years. M group chimpanzees were observed more than half of the time in areas that composed only 15 % of their total home range. Thus, they typically moved over limited areas, visiting other parts of their range only occasionally. On average, the chimpanzees used 7.6 km2 (in MCP) per month. Mean monthly range size was smallest at the end of the rainy season and largest at the end of the dry season, but there was much variability from year to year. The chimpanzees used many of the same areas every year when Saba comorensis fruits were abundant between August and January. In contrast, the chimpanzees used several different areas of their range in June. Here range overlap between years was relatively small. Over the 16 years of the study we found that the M group reduced their use of the northern part of their range and increased their frequency of visits to the eastern mountainous side of their home range. Changes in home-range size correlated positively with the number of adult females but not with the number of adult males. This finding does not support a prediction of the male-defended territory model proposed for some East African chimpanzee unit-groups.  相似文献   
50.
Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica   总被引:7,自引:0,他引:7  
Phytosulfokine (PSK), which has been identified as a plant growth factor, had a dramatic stimulatory effect on the formation of somatic embryos of sugi (Cryptomeria japonica) in the presence of polyethylene glycol. The resultant somatic embryos germinated with synchronous sprouting of cotyledons, hypocotyls and roots, and most of the seedlings grew normally. A cDNA clone for the precursor to the PSK peptide of C. japonica was identified in an expressed sequence tags database. Our results support the existence of a PSK signaling pathway in C. japonica.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号