首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7274篇
  免费   423篇
  国内免费   1篇
  2022年   33篇
  2021年   81篇
  2020年   46篇
  2019年   60篇
  2018年   79篇
  2017年   84篇
  2016年   130篇
  2015年   201篇
  2014年   242篇
  2013年   455篇
  2012年   345篇
  2011年   372篇
  2010年   232篇
  2009年   223篇
  2008年   372篇
  2007年   366篇
  2006年   378篇
  2005年   372篇
  2004年   350篇
  2003年   342篇
  2002年   343篇
  2001年   232篇
  2000年   236篇
  1999年   199篇
  1998年   90篇
  1997年   84篇
  1996年   66篇
  1995年   72篇
  1994年   60篇
  1993年   79篇
  1992年   147篇
  1991年   112篇
  1990年   116篇
  1989年   131篇
  1988年   97篇
  1987年   108篇
  1986年   85篇
  1985年   78篇
  1984年   72篇
  1983年   55篇
  1982年   38篇
  1981年   42篇
  1980年   36篇
  1979年   55篇
  1978年   29篇
  1977年   39篇
  1976年   24篇
  1975年   22篇
  1974年   27篇
  1973年   23篇
排序方式: 共有7698条查询结果,搜索用时 15 毫秒
991.
992.
The gene encoding putative aminoacylase (ORF: PH0722) in the genome sequence of a hyperthermophilic archaeon, Pyrococcus horikoshii, was cloned and overexpressed in Escherichia coli. The recombinant enzyme was determined to be thermostable aminoacylase (PhoACY), forming a homotetramer. Purified PhoACY showed the ability to release amino acid molecules from the substrates N-acetyl-L-Met, N-acetyl-L-Gln and N-acetyl-L-Leu, but had a lower hydrolytic activity towards N-acetyl-L-Phe. The kinetic parameters K(m) and k(cat) were determined to be 24.6 mm and 370 s(-1), respectively, for N-acetyl-l-Met at 90 degrees C. Purified PhoACY contained one zinc atom per subunit. EDTA treatment resulted in the loss of PhoACY activity. Enzyme activity was fully recovered by the addition of divalent metal ions (Zn(2+), Mn(2+) and Ni(2+)), and Mn(2+) addition caused an alteration in substrate specificity. Site-directed mutagenesis analysis and structural modeling of PhoACY, based on Arabidopsis thaliana indole-3-acetic acid amino acid hydrolase as a template, revealed that, amongst the amino acid residues conserved in PhoACY, His106, Glu139, Glu140 and His164 were related to the metal-binding sites critical for the expression of enzyme activity. Other residues, His198 and Arg260, were also found to be involved in the catalytic reaction, suggesting that PhoACY obeys a similar reaction mechanism to that proposed for mammalian aminoacylases.  相似文献   
993.
994.
Ten microsatellite loci were isolated and characterized for Callicarpa subpubescens (Verbenaceae), an endemic tree species of the Bonin Islands. The observed number of alleles at each locus ranged from two to eight with an average of 4.9, and the expected heterozygosity ranged from 0.238 to 0.690 with an average of 0.483. All 10 loci were screened in cross-amplification tests for two other endemic Callicarpa species that also inhabit the Bonin Islands. All loci were successfully amplified in these species.  相似文献   
995.
TRPA1 is a member of the transient receptor potential (TRP) cation channel family, and is predominantly expressed in nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. Activation of TRPA1 by environmental irritants such as mustard oil, allicin and acrolein causes acute pain. However, the endogenous ligands that directly activate TRPA1 remain elusive in inflammation. Here, we show that a variety of inflammatory mediators (15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), nitric oxide (NO), hydrogen peroxide (H(2)O(2)), and proton (H(+))) activate human TRPA1 heterologously expressed in HEK cells. These inflammatory mediators induced robust Ca(2+) influx in a subset of mouse DRG neurons. The TRP channel blocker ruthenium red almost completely inhibited neuronal responses by 15d-PGJ(2) and NO, but partially suppressed responses to H(2)O(2) and H(+). Functional characterization of site-directed cysteine mutants of TRPA1 in combination with labeling experiments using biotinylated 15d-PGJ(2) demonstrated that modifications of cytoplasmic N-terminal cysteines (Cys421 and Cys621) were responsible for the activation of TRPA1 by 15d-PGJ(2). In TRPA1 responses to other cysteine-reactive inflammatory mediators, such as NO and H(2)O(2), the extent of impairment by respective cysteine mutations differed from those in TRPA1 responses to 15d-PGJ(2). Interestingly, the Cys421 mutation critically impaired the TRPA1 response to H(+) as well. Our findings suggest that TRPA1 channels are targeted by an array of inflammatory mediators to elicit inflammatory pain in the nervous system.  相似文献   
996.
997.
Rad51 protein controls Rad52-mediated DNA annealing   总被引:1,自引:0,他引:1  
In Saccharomyces cerevisiae, Rad52 protein plays an essential role in the repair of DNA double-stranded breaks (DSBs). Rad52 and its orthologs possess the unique capacity to anneal single-stranded DNA (ssDNA) complexed with its cognate ssDNA-binding protein, RPA. This annealing activity is used in multiple mechanisms of DSB repair: single-stranded annealing, synthesis-dependent strand annealing, and cross-over formation. Here we report that the S. cerevisiae DNA strand exchange protein, Rad51, prevents Rad52-mediated annealing of complementary ssDNA. Efficient inhibition is ATP-dependent and involves a specific interaction between Rad51 and Rad52. Free Rad51 can limit DNA annealing by Rad52, but the Rad51 nucleoprotein filament is even more effective. We also discovered that the budding yeast Rad52 paralog, Rad59 protein, partially restores Rad52-dependent DNA annealing in the presence of Rad51, suggesting that Rad52 and Rad59 function coordinately to enhance recombinational DNA repair either by directing the processed DSBs to repair by DNA strand annealing or by promoting second end capture to form a double Holliday junction. This regulation of Rad52-mediated annealing suggests a control function for Rad51 in deciding the recombination path taken for a processed DNA break; the ssDNA can be directed to either Rad51-mediated DNA strand invasion or to Rad52-mediated DNA annealing. This channeling determines the nature of the subsequent repair process and is consistent with the observed competition between these pathways in vivo.  相似文献   
998.
999.
Streptococcus pneumoniae is a major causative agent of mortality throughout the world. The initial event in invasive pneumococcal disease is the attachment of pneumococci to epithelial cells in the upper respiratory tract. Several bacterial proteins can bind to host extracellular matrix proteins and function as adhesins and invasins. To identify adhesins or invasins on the pneumococcal cell surface, we searched for several proteins with an LPXTG anchoring motif in the whole-genome sequence of Streptococcus pneumoniae and identified one, which we called PfbA (plasmin- and fibronectin-binding protein A), that bound to human serum proteins. Immunofluorescence microscopy and fluorescence-activated cell sorter analysis revealed that PfbA was expressed on the pneumococcal cell surface. A DeltapfbA mutant strain was only half as competent as the wild-type strain at adhering to and invading lung and laryngeal epithelial cells. In addition, epithelial cells infected with DeltapfbA showed morphological changes, including cell flattening and a loss of microvilli, that did not occur in cells infected with the wild-type strain. The mutant strain also exhibited a weaker antiphagocytotic activity than wild type in human peripheral blood. Moreover, the growth of wild-type bacteria in human whole blood containing anti-PfbA antibodies was reduced by approximately 50% after 3 h compared with its growth without the antibody. These results suggest that PfbA is an important factor in the development of pneumococcal infections.  相似文献   
1000.
DNA recombination events need to be strictly regulated, because an increase in the recombinational frequency causes unfavorable alteration of genetic information. Recent studies revealed the existence of a novel anti-recombination enzyme, MutS2. However, the mechanism by which MutS2 inhibits homologous recombination has been unknown. Previously, we found that Thermus thermophilus MutS2 (ttMutS2) harbors an endonuclease activity and that this activity is confined to the C-terminal domain, whose amino acid sequence is widely conserved in a variety of proteins with unknown function from almost all organisms ranging from bacteria to man. In this study, we determined the crystal structure of the ttMutS2 endonuclease domain at 1.7-angstroms resolution, which resembles the structure of the DNase I-like catalytic domain of Escherichia coli RNase E, a sequence-nonspecific endonuclease. The N-terminal domain of ttMutS2, however, recognized branched DNA structures, including the Holliday junction and D-loop structure, a primary intermediate in homologous recombination. The full-length of ttMutS2 digested the branched DNA structures at the junction. These results indicate that ttMutS2 suppresses homologous recombination through a novel mechanism involving resolution of early intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号