首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2866篇
  免费   153篇
  3019篇
  2022年   14篇
  2021年   32篇
  2020年   17篇
  2019年   24篇
  2018年   29篇
  2017年   36篇
  2016年   61篇
  2015年   83篇
  2014年   92篇
  2013年   161篇
  2012年   155篇
  2011年   166篇
  2010年   117篇
  2009年   100篇
  2008年   195篇
  2007年   166篇
  2006年   189篇
  2005年   174篇
  2004年   171篇
  2003年   180篇
  2002年   181篇
  2001年   55篇
  2000年   52篇
  1999年   50篇
  1998年   38篇
  1997年   41篇
  1996年   35篇
  1995年   26篇
  1994年   11篇
  1993年   23篇
  1992年   34篇
  1991年   29篇
  1990年   17篇
  1989年   29篇
  1988年   22篇
  1987年   16篇
  1986年   19篇
  1985年   17篇
  1984年   26篇
  1983年   11篇
  1982年   14篇
  1981年   12篇
  1980年   12篇
  1979年   11篇
  1978年   10篇
  1977年   6篇
  1976年   12篇
  1973年   9篇
  1972年   5篇
  1971年   5篇
排序方式: 共有3019条查询结果,搜索用时 0 毫秒
61.
Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.  相似文献   
62.
Human mitochondrial (mt) tRNA(Lys) has a taurine-containing modified uridine, 5-taurinomethyl-2-thiouridine (taum5s2U), at its anticodon wobble position. We previously found that the mt tRNA(Lys), carrying the A8344G mutation from cells of patients with myoclonus epilepsy associated with ragged-red fibers (MERRF), lacks the taum5s2U modification. Here we describe the identification and characterization of a tRNA-modifying enzyme MTU1 (mitochondrial tRNA-specific 2-thiouridylase 1) that is responsible for the 2-thiolation of the wobble position in human and yeast mt tRNAs. Disruption of the yeast MTU1 gene eliminated the 2-thio modification of mt tRNAs and impaired mitochondrial protein synthesis, which led to reduced respiratory activity. Furthermore, when MTO1 or MSS1, which are responsible for the C5 substituent of the modified uridine, was disrupted along with MTU1, a much more severe reduction in mitochondrial activity was observed. Thus, the C5 and 2-thio modifications act synergistically in promoting efficient cognate codon decoding. Partial inactivation of MTU1 in HeLa cells by small interference RNA also reduced their oxygen consumption and resulted in mitochondria with defective membrane potentials, which are similar phenotypic features observed in MERRF.  相似文献   
63.
24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis.  相似文献   
64.
65.
66.
Abstract Vibrio vulnificus protease (VVP) stimulated histamine release from isolated mast cells in a dose- and temperature-dependent manner within a range of 0.2–4.0 μ g/0.5 ml. Histamine release was accompanied by degranulation, and no leakage of lactate dehydrogenase from cells was observed, indicating that the histamine release was not due to cytolysis but to exocytosis. This release, completed within 30 s at 37°C, suggested that the mechanism of action of VVP on mast cells is different from that of other proteases, such as trypsin or α-chymotrypsin, which release histamine from the cells slowly.  相似文献   
67.
68.
A new approach to high sensitivity differential hybridization   总被引:4,自引:0,他引:4  
We describe a new approach to differential hybridization, designed to identify cDNA clones representing rare mRNA species. Duplicate filters carrying a library of cDNA from phorbolmyristate acetate (PMA)-induced EL-4 cells in λgt11 were hybridized with high concentrations of unlabeled, cloned, single-stranded cDNA from induced and control EL-4 cells, respectively. Plaques binding single-stranded cDNA were revealed by a second round of hybridization with 35S-labeled DNA complementary to the vector moiety of the single-stranded cDNA. Plaques corresponding to PMA-induced mRNAs occurring at a level of about 1 part in 15000 were isolated. We believe the method is at least ten times more sensitive than conventional differential hybridization.  相似文献   
69.
70.
Summary Gene conversion, the non-reciprocal transfer of sequence information between homologous DNA sequences, has been reported in lower eukaryotes, mammals and in Escherichia coli. In an E. coli rec + strain, we established a plasmid carrying two different deleted neo genes (neoDL and neoDR) in an inverted orientation and then selected for homologous recombination events that had reconstructed an intact neo + gene. We found some plasmids that had apparently experienced intramolecular gene conversion. Further evidence, however, suggests that they are products of multiple rounds of reciprocal crossing-over,apparently involving two plasmid molecules. First, most of the Neo+ clones contained multiple types of Neo+ plasmids, although the frequency of producing the neo + clones was low. Second, all the neo + clones also contained, as a minority, one particular form of dimer, which can be formed by reciprocal crossing-over between neoDL of one plasmid molecule and neoDR of another plasmid molecule. Third, in reconstruction experiments, we cloned and purified this dimer and transferred it back into the rec + cells. The dimer gave rise to clones containing multiple types of neo + recombinant monomers, including those apparent gene conversion types, and containing only few molecules of this dimer plasmid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号