首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1025篇
  免费   38篇
  国内免费   1篇
  1064篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   6篇
  2018年   14篇
  2017年   4篇
  2016年   16篇
  2015年   22篇
  2014年   40篇
  2013年   50篇
  2012年   73篇
  2011年   52篇
  2010年   33篇
  2009年   28篇
  2008年   56篇
  2007年   52篇
  2006年   53篇
  2005年   58篇
  2004年   69篇
  2003年   61篇
  2002年   62篇
  2001年   23篇
  2000年   34篇
  1999年   35篇
  1998年   12篇
  1997年   12篇
  1996年   13篇
  1995年   18篇
  1994年   4篇
  1993年   13篇
  1992年   5篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   10篇
  1987年   8篇
  1986年   12篇
  1985年   7篇
  1984年   8篇
  1983年   7篇
  1982年   5篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1973年   2篇
  1967年   2篇
排序方式: 共有1064条查询结果,搜索用时 0 毫秒
61.
Minoda A  Sonoike K  Okada K  Sato N  Tsuzuki M 《FEBS letters》2003,553(1-2):109-112
Photosystem (PS) II activity of a sulfoquinovosyl diacylglycerol (SQDG)-deficient mutant (hf-2) of Chlamydomonas was partially decreased compared with that of wild-type. The susceptibility to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modified in the mutant. Photometric measurements in the isolated thylakoid membranes of hf-2 revealed that the lowered activity in the mutant was derived from a decrease in the efficiency of the electron donation from water to tyrosine Z, not from the efficiency of the electron transport from Q(A) to Q(B). This result was confirmed by the decay kinetics of chlorophyll fluorescence determined in vivo. We conclude that SQDG contributes to maintaining the conformation of PSII complexes, particularly that of D1 polypeptides, which are necessary for maximum activities in Chlamydomonas.  相似文献   
62.
63.
Interactions between dendritic cells (DCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, most likely play a key role in anti-mycobacterial immunity. We have recently shown that M. tuberculosis binds to and infects DCs through ligation of the DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and that M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) inhibits binding of the bacilli to the lectin, suggesting that ManLAM might be a key DC-SIGN ligand. In the present study, we investigated the molecular basis of DC-SIGN ligation by LAM. Contrary to what was found for slow growing mycobacteria, such as M. tuberculosis and the vaccine strain Mycobacterium bovis bacillus Calmette-Guérin, our data demonstrate that the fast growing saprophytic species Mycobacterium smegmatis hardly binds to DC-SIGN. Consistent with the former finding, we show that M. smegmatis-derived lipoarabinomannan, which is capped by phosphoinositide residues (PILAM), exhibits a limited ability to inhibit M. tuberculosis binding to DC-SIGN. Moreover, using enzymatically demannosylated and chemically deacylated ManLAM molecules, we demonstrate that both the acyl chains on the ManLAM mannosylphosphatidylinositol anchor and the mannooligosaccharide caps play a critical role in DC-SIGN-ManLAM interaction. Finally, we report that DC-SIGN binds poorly to the PILAM and uncapped AraLAM-containing species Mycobacterium fortuitum and Mycobacterium chelonae, respectively. Interestingly, smooth colony-forming Mycobacterium avium, in which ManLAM is capped with single mannose residues, was also poorly recognized by the lectin. Altogether, our results provide molecular insight into the mechanisms of mycobacteria-DC-SIGN interaction, and suggest that DC-SIGN may act as a pattern recognition receptor and discriminate between Mycobacterium species through selective recognition of the mannose caps on LAM molecules.  相似文献   
64.
The Notch signalling pathway plays essential roles during the specification of the rostral and caudal somite halves and subsequent segmentation of the paraxial mesoderm. We have re-investigated the role of presenilin 1 (Ps1; encoded by Psen1) during segmentation using newly generated alleles of the Psen1 mutation. In Psen1-deficient mice, proteolytic activation of Notch1 was significantly affected and the expression of several genes involved in the Notch signalling pathway was altered, including Delta-like3, Hes5, lunatic fringe (Lfng) and Mesp2. Thus, Ps1-dependent activation of the Notch pathway is essential for caudal half somite development. We observed defects in Notch signalling in both the caudal and rostral region of the presomitic mesoderm. In the caudal presomitic mesoderm, Ps1 was involved in maintaining the amplitude of cyclic activation of the Notch pathway, as represented by significant reduction of Lfng expression in Psen1-deficient mice. In the rostral presomitic mesoderm, rapid downregulation of the Mesp2 expression in the presumptive caudal half somite depends on Ps1 and is a prerequisite for caudal somite half specification. Chimaera analysis between Psen1-deficient and wild-type cells revealed that condensation of the wild-type cells in the caudal half somite was concordant with the formation of segment boundaries, while mutant and wild-type cells intermingled in the presomitic mesoderm. This implies that periodic activation of the Notch pathway in the presomitic mesoderm is still latent to segregate the presumptive rostral and caudal somite. A transient episode of Mesp2 expression might be needed for Notch activation by Ps1 to confer rostral or caudal properties. In summary, we propose that Ps1 is involved in the functional manifestation of the segmentation clock in the presomitic mesoderm.  相似文献   
65.
Yuasa HJ  Takagi T 《Gene》2001,268(1-2):17-22
Troponin C (TnC) superfamily genes essentially possess five introns, the positions of all but the fourth being highly conserved. The fourth intron is frequently absent from protostomian invertebrate genes, such as calmodulin or TnC. We previously proposed that the common ancestor of TnC superfamily genes never possessed an intron corresponding to today's fourth introns, and that members of the superfamily independently gained a fourth intron in the evolutionary pathway of each lineage. In the present study, we isolated the TnC cDNA from the sandworm, Perinereis vancaurica tetradentata and determined its genomic structure. Sandworm TnC appears to exist as a single copy gene consisting of six exons and five introns. The positions of the first, second, third and fifth introns are identical to other TnCs, but that of the fourth intron is unique. This is in good agreement with the above-mentioned scheme, i.e. the gain of the fourth intron of sandworm TnC might have occurred within the annelid lineage after annelida/mollusca divergence.  相似文献   
66.
The cDNA of D-amino acid oxidase (DAO) gene isolated from Trigonopsis variabilis was expressed in Schizosaccharomyces pombe. A clone, ASP327-10, transformed with plasmid vector, pTL2M5DAO, expressed catalytically active DAO in the presence of G418, and converted Cephalosprin C to alpha-ketoadipyl-7-cephalosporanic acid (KA-7-ACA) and glutaryl-7-aminocephalosporanic acid (GL-7-ACA). Biocatalysts were prepared using ASP327-10 and T. variabilis, and evaluated to demonstrate the feasibility of recombinant S. pombe for industrial application. The cells were immobilized by crosslinking polyethylene imine after glutardialdehyde (GDA) fixation and permeabilization by alkaline treatment. Although the biocatalyst prepared from ASP327-10 exhibited DAO activity, catalase activity still remained fully even after permeabilization, under which condition, the catalase activity of T. variabilis decreased to 20-30%. Heat treatment was required before cell fixation by GDA to inactivate the catalase in S. pombe. This improved the efficiency of bioconversion to GL-7-ACA, but caused poor mechanical strength in the biocatalyst of S. pombe. To overcome this weakness, a catalase-deficient host strain was obtained by ethylmethansulfate mutagenesis. Moreover, taking economics into consideration, the integrative vector, pTL2M5DAO-8XL, with multi-copies of expression cassette was constructed to express DAO in S. pombe even in the absence of G418. The newly established integrant, ASP417-7, did not exhibit any catalase activity so that heat treatment was not required. The obtained integrant and its biocatalyst were significantly improved in GL-7ACA conversion ability and mechanical strength. This study demonstrates that the established integrant is a potential candidate as an alternative source of DAO enzyme.  相似文献   
67.
Many adverse effects on carp reproductive organs have been reported to be caused by exposure to environmental estrogens, such as nonylphenol and bisphenol A, which contaminate the aquatic environment. The glucuronidation activities of xenoestrogens (bisphenol A and diethylstilbestrol) and phytoestrogens (coumestrol, genistein and biochanin A), but not nonylphenol and octylphenol, were observed in microsomes prepared from carp organs. The highest levels of glucuronidation of environmental estrogens, for which the optimum temperature was 25-30 degrees C, were observed in the intestinal microsomes of 2-year-old carp. These activities in carp intestine increased developmentally, and the maximum levels corresponded to 5-10 % of that in rat liver microsomes. However, the glucuronidation of phytoestrogen by carp intestinal microsomes corresponded to that of rat liver microsomes. Only bisphenol A-glucuronide was excreted from the everted intestine, indicating that bisphenol A is metabolized in the carp intestine mainly as glucuronide.These results suggest that glucuronidation by carp intestine plays an important role for the detoxification of xenoestrogens and phytoestrogens, except for nonylphenol and octylphenol.  相似文献   
68.
69.
Kinesin family proteins are microtubule-dependent molecular motors involved in the intracellular motile process. Using a Ca2+ -binding protein, CHP (calcineurin B homologous protein), as a bait for yeast two hybrid screening, we identified a novel kinesin-related protein, KIF1Bbeta2. KIF1Bbeta2 is a member of the KIF1 subfamily of kinesin-related proteins, and consists of an amino terminal KIF1B-type motor domain followed by a tail region highly similar to that of KIF1A. CHP binds to regions adjacent to the motor domains of KIF1Bbeta2 and KIF1B, but not to those of the other KIF1 family members, KIF1A and KIF1C. Immunostaining of neuronal cells showed that a significant portion of KIF1Bbeta2 is co-localized with synaptophysin, a marker protein for synaptic vesicles, but not with a mitochondria-staining dye. Subcellular fractionation analysis indicated the co-localization of KIF1Bbeta2 with synaptophysin. These results suggest that KIF1Bbeta2, a novel CHP-interacting molecular motor, mediates the transport of synaptic vesicles in neuronal cells.  相似文献   
70.
Vacuoles of radish (Raphanus sativus) contained a Ca2+-binding protein (RVCaB) of 43 kDa. We investigated the Ca2+-binding properties of the protein. RVCaB was expressed in Escherichia coli and was purified from an extract by ion-exchange chromatography, nitrocellulose membrane filtration, and gel-filtration column chromatography. Ca2+-binding properties of the recombinant protein were examined by equilibrium dialysis with 45Ca2+ and small dialysis buttons. The protein was estimated to bind 19Ca2+ ions per molecule with a Kd for Ca2+ of 3.4 mM. Ca2+ was bound to the protein even in the presence of high concentrations of Mg2+ or K+. The results suggested that the protein bound Ca2+ with high ion selectivity, high capacity, and low affinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号