首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   618篇
  免费   26篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   11篇
  2017年   1篇
  2016年   13篇
  2015年   11篇
  2014年   31篇
  2013年   34篇
  2012年   50篇
  2011年   36篇
  2010年   26篇
  2009年   18篇
  2008年   39篇
  2007年   39篇
  2006年   38篇
  2005年   43篇
  2004年   54篇
  2003年   45篇
  2002年   41篇
  2001年   5篇
  2000年   10篇
  1999年   12篇
  1998年   8篇
  1997年   4篇
  1996年   7篇
  1995年   9篇
  1994年   3篇
  1993年   12篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有645条查询结果,搜索用时 15 毫秒
51.
Equol is a metabolite produced from daidzein by enteric microflora, and it has attracted a great deal of attention because of its protective or ameliorative ability against several sex hormone-dependent diseases (e.g., menopausal disorder and lower bone density), which is more potent than that of other isoflavonoids. We purified a novel NADP(H)-dependent daidzein reductase (L-DZNR) from Lactococcus strain 20-92 (Lactococcus 20-92; S. Uchiyama, T. Ueno, and T. Suzuki, international patent WO2005/000042) that is involved in the metabolism of soy isoflavones and equol production and converts daidzein to dihydrodaidzein. Partial amino acid sequences were determined from purified L-DZNR, and the gene encoding L-DZNR was cloned. The nucleotide sequence of this gene consists of an open reading frame of 1,935 nucleotides, and the deduced amino acid sequence consists of 644 amino acids. L-DZNR contains two cofactor binding motifs and an 4Fe-4S cluster. It was further suggested that L-DZNR was an NAD(H)/NADP(H):flavin oxidoreductase belonging to the old yellow enzyme (OYE) family. Recombinant histidine-tagged L-DZNR was expressed in Escherichia coli. The recombinant protein converted daidzein to (S)-dihydrodaidzein with enantioselectivity. This is the first report of the isolation of an enzyme related to daidzein metabolism and equol production in enteric bacteria.Isoflavones are flavonoids present in various plants and are known to be abundant in soybeans and legumes. These compounds have been called phytoestrogens because their chemical structure is similar to that of the female sex hormone, estrogen. Isoflavones have an ability to bind to estrogen receptors and show protection against or improvement in several sex hormone-dependent diseases, such as breast cancer, prostate cancer, menopausal disorder, lower bone density, and hypertension, due to their weak agonistic or antagonistic effects (1, 19, 27).Daidzein is one of the main soy isoflavonoids produced from daidzin by the glucosidase of intestinal bacteria (17). Equol is a metabolite produced from daidzein by the enterobacterial microflora (5). Recently, equol has attracted a great deal of attention because its estrogenic activity is more potent than that of other isoflavonoids, including daidzein (27). It is well known that individual variation exists in the ability of these enteric microflora to produce equol and that less than half the human population is capable of producing equol after ingesting soy isoflavones (3). Therefore, to increase the production of equol in the enteric environment of each individual, the development of probiotics using safe bacteria which have the ability to produce equol from daidzein is ongoing.Lactococcus strain 20-92 (Lactococcus 20-92; 30a) is an equol-producing lactic acid bacterium isolated from the feces of healthy humans by Uchiyama et al. (30). This bacterium is spherical and Gram positive and is a strain of L. garvieae. The application of Lactococcus 20-92 in probiotics is advantageous because L. garvieae is not pathogenic or toxic to humans.To date, other bacterial strains that are capable of transforming daidzein to dihydrodaidzein or equol have been isolated (9, 21, 22, 23, 29, 32, 36, 37). Daidzein is thought to be metabolized by human intestinal bacteria to equol or to O-desmethylangolensin via dihydrodaidzein and tetrahydrodaidzein (14, 15, 22, 32); however, neither the enzymes involved in the metabolism of daidzein to equol nor even the metabolic pathway has been clarified fully for equol-producing bacteria.In this study, we purified an enzyme from Lactococcus 20-92 that assisted in the conversion of daidzein to dihydrodaidzein. Furthermore, we cloned the L-DZNR gene and expressed the active recombinant enzyme in E. coli.  相似文献   
52.
53.
Protein kinase C (PKC) is considered to modulate glucose-stimulated insulin secretion. Pancreatic beta cells express multiple isoforms of PKCs; however, the role of each isoform in glucose-stimulated insulin secretion remains controversial. In this study we investigated the role of PKCdelta, a major isoform expressed in pancreatic beta cells on beta cell function. Here, we showed that PKCdelta null mice manifested glucose intolerance with impaired insulin secretion. Insulin tolerance test showed no decrease in insulin sensitivity in PKCdelta null mice. Studies using islets isolated from these mice demonstrated decreased glucose- and KCl-stimulated insulin secretion. Perifusion studies indicated that mainly the second phase of insulin secretion was decreased. On the other hand, glucose-induced influx of Ca2+ into beta cells was not altered. Immunohistochemistry using total internal reflection fluorescence microscopy and electron microscopic analysis showed an increased number of insulin granules close to the plasma membrane in beta cells of PKCdelta null mice. Although PKC is thought to phosphorylate Munc18-1 and facilitate soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors complex formation, the phosphorylation of Munc18-1 by glucose stimulation was decreased in islets of PKCdelta null mice. We conclude that PKCdelta plays a non-redundant role in glucose-stimulated insulin secretion. The impaired insulin secretion in PKCdelta null mice is associated with reduced phosphorylation of Munc18-1.  相似文献   
54.
A number of gram-negative bacteria have a quorum-sensing system and produce N-acyl-l-homoserine lactone (AHL) that they use them as a quorum-sensing signal molecule. Pantoea ananatis is reported as a common colonist of wheat heads at ripening and causes center rot of onion. In this study, we demonstrated that P. ananatis SK-1 produced two AHLs, N-hexanoyl-l-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL). We cloned the AHL-synthase gene (eanI) and AHL-receptor gene (eanR) and revealed that the deduced amino acid sequence of EanI/EanR showed high identity to those of EsaI/EsaR from P. stewartii. EanR repressed the ean box sequence and the addition of AHLs resulted in derepression of ean box. Inactivation of the chromosomal eanI gene in SK-1 caused disruption of exopolysaccharide (EPS) biosynthesis, biofilm formation, and infection of onion leaves, which were recovered by adding exogenous 3-oxo-C6-HSL. These results demonstrated that the quorum-sensing system involved the biosynthesis of EPS, biofilm formation, and infection of onion leaves in P. ananatis SK-1.  相似文献   
55.
Amphiphysin 1 is involved in clathrin-mediated endocytosis. In this study, we demonstrate that amphiphysin 1 is essential for cellular phagocytosis and that it is critical for actin polymerization. Phagocytosis in Sertoli cells was induced by stimulating phosphatidylserine receptors. This stimulation led to the formation of actin-rich structures, including ruffles, phagocytic cups, and phagosomes, all of which showed an accumulation of amphiphysin 1. Knocking out amphiphysin 1 by RNA interference in the cells resulted in the reduction of ruffle formation, actin polymerization, and phagocytosis. Phagocytosis was also drastically decreased in amph 1 (-/-) Sertoli cells. In addition, phosphatidylinositol-4,5-bisphosphate-induced actin polymerization was decreased in the knockout testis cytosol. The addition of recombinant amphiphysin 1 to the cytosol restored the polymerization process. Ruffle formation in small interfering RNA-treated cells was recovered by the expression of constitutively active Rac1, suggesting that amphiphysin 1 functions upstream of the protein. These findings support that amphiphysin 1 is important in the regulation of actin dynamics and that it is required for phagocytosis.  相似文献   
56.
Tamura M  Kajikawa M  Okada N 《Gene》2007,390(1-2):221-231
Long interspersed elements (LINEs) are transposable elements that exist in many kinds of eukaryotic genomes, where they have a large effect on genome evolution. There are several thousands to hundreds of thousands of LINE copies in each eukaryotic genome. LINE elements are amplified by a mechanism called retrotransposition, in which a LINE-encoded protein reverse transcribes (copies) its own RNA. We previously isolated two retrotransposition-competent LINEs, ZfL2-1 and ZfL2-2, from zebrafish. Although it has generally been thought that LINEs do not have ‘introns’ (because the LINE RNA is used as the template during retrotransposition), we now show that these two LINEs contain multiple putative functional splice sites. We further show that at least one pair of these splice sites is actually functional in zebrafish cells. Moreover, some of these splice sites are coupled with the splicing signal of a host endogenous gene, thereby generating a new chimeric spliced mRNA variant for this gene. Our results suggest the possible role of these LINE splice sites in modulating retrotransposition and host gene expression.  相似文献   
57.
58.
L1 is the most proliferative autonomous retroelement that comprises about 20% of mammalian genomes. Why L1s have proliferated so extensively in mammalian genomes is an important yet unsolved question. L1 copies are amplified via retrotransposition, in which the DNA cleavage specificity by the L1-encoded endonuclease (EN) primarily dictates sites of insertion. Whereas mammalian L1s show target preference for 5'-TTAAAA-3', other L1-like elements exhibit various degrees of target specificity. To gain insights on diversification of the EN specificity during L1 evolution, ENs of zebrafish L1 elements were analyzed here. We revealed that they form 3 discrete clades, M, F, and Tx1, which is in stark contrast to a single L1 clade in mammalian species. Interestingly, zebrafish clade M elements cluster as a sister group of mammalian L1s and show target-site preference for 5'-TTAAAA-3'. In contrast, elements of the clade F, the immediate outgroup of the clade M, show little specificity. We identified certain clade-specific amino acid residues in EN, many of which are located in the cleft that recognizes the substrate, suggesting that these amino acid alterations have generated 2 types of ENs with different substrate specificities. The distribution pattern of the 3 clades suggests a possibility that the acquisition of target specificity by the L1 ENs improved the L1 fitness under the circumstances in mammalian hosts.  相似文献   
59.
Ethyl 4-[2-(6-methyl-3-pyridyloxy)hexyloxy]benzoate (1) and ethyl 4-(2-phenoxyhexyloxy)benzoate (2), which induce precocious metamorphosis in larvae of Bombyx mori, a clear sign of juvenile hormone (JH) deficiency, showed JH activity when topically applied to allatectomized 4th instar larvae of B. mori. Compounds 1 and 2 induced precocious metamorphosis with doses at which they were effective as JH agonists.  相似文献   
60.
A structure-activity relationship study of 4-anilinopyrimidines for dual EGFR/Her-2 inhibitor has resulted in the identification of 4-anilino-5-alkenyl or 5-alkynyl-6-methylpyrimidine derivatives that have exhibited effective inhibitory activity against both enzymes. The presence of 5-alkenyl or 5-alkynyl moiety bearing terminal hydrophilic group played important role for inhibition of these enzymes. Selected compounds in the series demonstrated some activity against Her-2 dependent cell line (BT474).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号