首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   9篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   8篇
  2015年   7篇
  2014年   8篇
  2013年   20篇
  2012年   12篇
  2011年   17篇
  2010年   5篇
  2009年   7篇
  2008年   10篇
  2007年   16篇
  2006年   13篇
  2005年   16篇
  2004年   9篇
  2003年   7篇
  2002年   8篇
  2000年   1篇
  1999年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
11.
Staphylococcus aureus is a major pathogen in humans and causes serious problems due to antibiotic resistance. We investigated the antimicrobial effect of glycyrrhetinic acid (GRA) and its derivatives against 50 clinical S. aureus strains, including 18 methicillin-resistant strains. The minimum inhibitory concentrations (MICs) of GRA, dipotassium glycyrrhizate, disodium succinoyl glycyrrhetinate (GR-SU), stearyl glycyrrhetinate and glycyrrhetinyl stearate were evaluated against various S. aureus strains. Additionally, we investigated the bactericidal effects of GRA and GR-SU against two specific S. aureus strains. DNA microarray analysis was also performed to clarify the mechanism underlying the antibacterial activity of GR-SU. We detected the antimicrobial activities of five agents against S. aureus strains. GRA and GR-SU showed strong antibacterial activities compared to the other three agents tested. At a higher concentration (above 2x MIC), GRA and GR-SU showed bactericidal activity, whereas at a concentration of 1x MIC, they showed a bacteriostatic effect. Additionally, GRA and GR-SU exhibited a synergistic effect with gentamicin. The expression of a large number of genes (including transporters) and metabolic factors (carbohydrates and amino acids) was altered by the addition of GR-SU, suggesting that the inhibition of these metabolic processes may influence the degree of the requirement for carbohydrates or amino acids. In fact, the requirement for carbohydrates or amino acids was increased in the presence of either GRA or GR-SU. GRA and GR-SU exhibited strong antibacterial activity against several S. aureus strains, including MRSA. This activity may be partly due to the inhibition of several pathways involved in carbohydrate and amino acid metabolism.  相似文献   
12.
Chronic kidney disease (CKD) disrupts mineral homeostasis and its representative pathosis is defined as secondary hyperparathyroidism (SHPT). SHPT occurs during the early course of progressive renal insufficiency, and is associated with mortality and cardiovascular events. SHPT results in reduction of calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) in the parathyroid glands during CKD. However, the precise mechanism of CaSR and VDR reduction is largely unknown. CKD was induced through two-step 5/6 nephrectomy, and then CKD rats and sham-operated rats were maintained for 8 weeks on diets containing 0.7 % phosphorus (normal phosphate) or 1.2 % phosphorus (high phosphate). In gene expression analysis, TaqMan probes were used for quantitative real-time polymerase chain reaction. Finally, CaSR and VDR protein expressions were analyzed using immunohistochemistry. DNA methylation analysis was performed using a restriction digestion and quantitative PCR. CaSR and VDR mRNA were reduced only in CKD rats fed the high-phosphorus diets (CKD HP), then CaSR and VDR immunohistochemical expressions were compatible with gene expression assay. SHPT was then confirmed only in CKD HP rats. Furthermore, sole CKD HP rats showed the hypermethylation in CaSR and VDR genes; however, the percentage methylation of both genes was low. Although CaSR and VDR hypermethylation was demonstrated in PTGs of CKD HP rats, the extent of hypermethylation was insufficient to support the relevance between hypermethylation and down-regulation of gene expression because of the low percentage of methylation. Consequently, our data suggest that mechanisms, other than DNA hypermethylation, were responsible for the reduction in mRNA and protein levels of CaSR and VDR in PTGs of CKD HP rats.  相似文献   
13.
An archaeon GGG(A)X-type esterase (ST0071) can catalyze the hydrolysis of various acetates of secondary alcohols, but shows low enantioselectivity. Using structure-guided site-saturation mutagenesis, we successfully identified a G274W variant that has excellent selectivity compared with that of wild-type ST0071.  相似文献   
14.
Ameloblastoma is an odontogenic tumor located in the bone jaw with clinical characteristics of extensive bone resorption. It is a locally invasive tumor with a high recurrence rate despite adequate surgical removal. In bone disease, tumors and other cells including osteoblasts, osteoclasts, and osteocytes in the bone microenvironment contribute to the pathogenesis of tumor growth. However, the effect of osteoblasts on ameloblastoma cells is not well-understood, and there has been limited research on interactions between them.This study investigated interactions between ameloblastoma cells and osteoblasts using a human ameloblastoma cell line (AM-3 ameloblastoma cells) and a murine pre-osteoblast cell line (MC3T3-E1 cells). We treated each cell type with the conditioned medium by the other cell type. We analyzed the effect on cytokine production by MC3T3-E1 cells and the production of MMPs by AM-3 cells. Treatment with AM-3-conditioned medium induced inflammatory cytokine production of IL-6, MCP-1, and RANTES from MC3T3-E1 cells. The use of an IL-1 receptor antagonist suppressed the production of these inflammatory cytokines by MC3T3-E1 cells stimulated with AM-3-conditioned medium. The MC3T3-E1-conditioned medium triggered the expression of MMP-2 from AM-3 cells. Furthermore, we have shown that the proliferation and migration activity of AM-3 cells were accelerated by MC3T3-E1 conditioned media.In conclusion, these intercellular signalings between ameloblastoma cells and osteoblasts may play multiple roles in the pathogenesis of ameloblastoma.  相似文献   
15.
During chick liver development, the liver bud arises from the foregut, invaginates into the septum transversum, and elongates along and envelops the ductus venosus. However, the mechanism of liver bud migration is only poorly understood. Here, we demonstrate that a GDNF family ligand involved in neuronal outgrowth and migration, neurturin (NRTN), and its receptor, GFRalpha2, are essential for liver bud migration. In the chick embryo, we found that GFRalpha2 was expressed in the liver bud and that NRTN was expressed in the endothelial cells of the ductus venosus. Inhibition of GFRalpha2 signaling suppressed liver bud elongation along the ductus venous without affecting cell proliferation and apoptosis. Moreover, ectopic expression of NRTN perturbed the directional migration along the ductus venosus, leading to splitting or ectopic branching of the liver. We showed that liver buds selectively migrated toward an NRTN-soaked bead in vitro. These data represent a new model for liver bud migration: NRTN secreted from endothelial cells functions as a chemoattractant to direct the migration of the GFRalpha2-expressing liver bud in early liver development.  相似文献   
16.
Alpha(1)-acid glycoprotein (AGP) is a glycoprotein that consists of 183 amino acid residues and five carbohydrate chains and binds to neutral and basic drugs. We examined the structural properties and ligand-binding capacity of AGP in interactions with reverse micelles. Also, detailed information was obtained by comparing several different states of AGP. Interaction with reverse micelles induced a unique conformational transition (beta-sheet to alpha-helices) in AGP and decreased the binding capacity for the basic drug, chlorpromazine and the steroid hormone, progesterone to AGP. These structural conformations are very similar to those observed under conditions of acidity and high ionic strength (pH 2.0, 1.5 M NaCl). This structure seems to be an intermediate between the native state and the denatured state, possibly a molten globule. The present results suggest that when AGP interacts with the biomembrane, it undergoes a structural transition to a unique structure that differs from the native and denatured states and has a reduced ligand-binding capacity.  相似文献   
17.
(+)-Strigol was isolated from Menispermum dauricum root culture filtrate. Its identity was confirmed by HPLC, 1H NMR, UV and MS, and on the basis of its CD spectrum. This is the first report on isolation of strigolactone from aseptic plant culture.  相似文献   
18.
19.
20.
In our previous study, it was suggested that ANP and cGMP may increase Na+ absorption in the urinary bladder of the Japanese tree frog, Hyla japonica. Thus, Na+ transport activated by ANP was investigated electrophysiologically by using a cell-attached patch-clamp technique in freshly isolated cells from the urinary bladder. A predominant channel expressed was a low conductance Na+ channel in the epithelial cells. The channel exhibited conductance for inward currents of 4.9 ± 0.2 pS, long open and closed times (c.a. 190 ms), and positive reversal potential. The channel activity was decreased under the pipette solution including 10−6 M amiloride. These characteristics were similar to those of amiloride-sensitive Na+ channels (ENaC). Addition of 10−9 M ANP activated and significantly increased the ENaC activity from 0.58 ± 0.09 to 1.47 ± 0.34. On the other hand, mean amplitudes and conductance of single channel did not change significantly after the addition of ANP. Addition of 10−5 M 8-Br-cGMP also activated the ENaC and significantly increased the channel activity from 0.56 ± 0.10 to 2.00 ± 0.33. The addition of ANP failed to activate the ENaC in the presence of 10−6 M amiloride. These results suggested that ANP and cGMP activate Na+ transport via ENaC in the epithelial cells of frog urinary bladder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号