首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1328篇
  免费   56篇
  国内免费   1篇
  2022年   9篇
  2021年   11篇
  2020年   12篇
  2019年   13篇
  2018年   8篇
  2017年   12篇
  2016年   30篇
  2015年   45篇
  2014年   37篇
  2013年   65篇
  2012年   71篇
  2011年   69篇
  2010年   40篇
  2009年   51篇
  2008年   68篇
  2007年   76篇
  2006年   73篇
  2005年   74篇
  2004年   77篇
  2003年   62篇
  2002年   75篇
  2001年   28篇
  2000年   22篇
  1999年   31篇
  1998年   19篇
  1997年   21篇
  1996年   9篇
  1995年   15篇
  1994年   16篇
  1993年   12篇
  1992年   16篇
  1991年   15篇
  1990年   10篇
  1989年   17篇
  1988年   24篇
  1987年   17篇
  1986年   12篇
  1985年   14篇
  1984年   11篇
  1983年   9篇
  1982年   11篇
  1981年   12篇
  1980年   7篇
  1979年   11篇
  1978年   8篇
  1977年   9篇
  1976年   6篇
  1973年   5篇
  1971年   4篇
  1968年   2篇
排序方式: 共有1385条查询结果,搜索用时 281 毫秒
41.
Summary Detailed histochemical studies have been conducted on the distribution of various enzymes such as thiamine pyrophosphatase, α-glucan phosphorylase, hexokinase, glucose-6-phosphate dehydrogenase, aldolase, lactate dehydrogenase and succinate dehydrogenase in various components of the nucleusEdinger-Westphali, nucleus n. oculomotorii, nucleus ruber and nucleus niger of healthy adult male Wistar strain rats. The thiamine pyrophosphatase reaction showed the morphological patterns of the Golgi apparatus characteristic for each nucleus. The Golgi apparatus was well developed in the nucleusEdinger-Westphali, composing a network of highly fenestrated plates in the nucleus n. oculomotorii and nucleus ruber, and a simple network in the nucleus niger. These results indicate that the former three nuclei need a rich energy supply and argue against the possibility that the four nuclei have a secretory role. The neurons of the nucleusEdinger-Westphali may derive their energy mainly from glucose of the circulating blood, but glial cells may serve as energy donators to the neurons in the pars compacta of the nucleus niger, and the neurons of the other nuclei may derive energy from both sources. These conclusions are consistent with the morphological patterns of the Golgi apparatus. It is suggested that the neurons of the nucleusEdinger-Westphali, nucleus n. oculomotorii, nucleus ruber and of the pars lateralis of the nucleus niger may be equipped almost equally with the Embden-Meyerhof pathway and with the hexose monophosphate shunt. But, the hexose monophosphate shunt is dominant in the pars compacta of the nucleus niger. It is also suggested that the pattern of distribution of succinate dehydrogenase may parallel that of lactate dehydrogenase. The nucleus n. oculomotorii, and nucleus ruber have a higher level of oxidative metabolism than the nucleusEdinger-Westphali and the nucleus niger. The nucleusEdinger-Westphali may be representative of autonomic nuclei with low oxidative metabolism whereas the nucleus n. oculomotorii may represent motor nuclei with high oxidative metabolism. Predominance of hexose monophosphate shunt, intense hexokinase reaction around the neurons, and weak activity of succinate dehydrogenase indicate that the pars compacta of the nucleus niger belongs to the category of “exceptional nuclei”.  相似文献   
42.
Summary The frequency of Y chromatin, visualized as fluorescent bodies in cell nuclei from lymphocytes in blood smears, was signficantly less in newborn males than in three-month-old male infants and adults. The frequency of Y chromatin-positive cells on day 0 was 36.16±9.11% and then increased daily. At one month after birth the frequency was 55.07±9.29%, which was not significantly different from that in adult males (57.08±5.97%).  相似文献   
43.
Embryonic stem (ES) cells are a useful experimental material to recapitulate the differentiation steps of early embryos, which are usually invisible and inaccessible from outside of the body, especially in mammals. ES cells have greatly facilitated the analyses of gene expression profiles and cell characteristics. In addition, understanding the mechanisms during neural differentiation is important for clinical purposes, such as developing new therapeutic methods or regenerative medicine. As neurons have very limited regenerative ability, neurodegenerative diseases are usually intractable, and patients suffer from the disease throughout their lifetimes. The functional cells generated from ES cells in vitro could replace degenerative areas by transplantation. In this review, we will first demonstrate the historical views and widely accepted concepts regarding the molecular mechanisms of neural induction and positional information to produce the specific types of neurons in model animals. Next, we will describe how these concepts have recently been applied to the research in the establishment of the methodology of neural differentiation from mammalian ES cells. Finally, we will focus on examples of the applications of differentiation systems to clinical purposes. Overall, the discussion will focus on how historical developmental studies are applied to state‐of‐the‐art stem cell research.  相似文献   
44.
Mitochondrial DNA (mtDNA) is packaged into DNA–protein complexes called nucleoids, which are distributed as many small foci in mitochondria. Nucleoids are crucial for the biogenesis and function of mtDNA. Here, using a yeast genetic screen for components that control nucleoid distribution and size, we identify Fcj1 and Mos1, two evolutionarily conserved mitochondrial proteins that maintain the connection between the cristae and boundary membranes. These two proteins are also important for establishing tubular morphology of mitochondria, as mitochondria lacking Fcj1 and Mos1 form lamellar sheets. We find that nucleoids aggregate, increase in size, and decrease in number in fcj1∆ and mos1∆ cells. In addition, Fcj1 form punctate structures and localized adjacent to nucleoids. Moreover, connecting mitochondria by deleting the DNM1 gene required for organelle division enhances aggregation of mtDNA nucleoids in fcj1∆ and mos1∆ cells, whereas single deletion of DNM1 does not affect nucleoids. Conversely, deleting F1Fo-ATP synthase dimerization factors generates concentric ring-like cristae, restores tubular mitochondrial morphology, and suppresses nucleoid aggregation in these mutants. Our findings suggest an unexpected role of Fcj1-Mos1 and organelle division in maintaining the distribution and size of mtDNA nucleoids.  相似文献   
45.
Abstract

Griseolic acid derivatives which were modified at the 2-and/or 6-positions were first synthesized from griseolic acid by a ring opening—reclosure reaction of the adenine ring. Among these derivatives, the 2-amino-6-deamino-6-hydroxyl (guanine) derivative showed 3.3 and 45 times stronger inhibitory activity against cAMP and cGMP PDE, respectively, than those of griseolic acid. Structure-activity relationships among these derivatives are also discussed.  相似文献   
46.
Abstract

Synthesis of 5-carbon-substituted 1-β-d-ribofuranosylimidazole-4-carboxamides are described. Treatment of 5-iodo derivative 8 with methyl acrylate in the presence of palladium catalyst gave (E)-5-(2-carbomethoxyvinyl)-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)imidazole-4-carboxamide (9), followed by appropriate manipulations to afford various 5-carbon-substituted imidazole derivatives 1–7. The antileukemic activities of these imidazole nucleosides are also described.

  相似文献   
47.
Synechocystis sp. PCC 6803, a cyanobacterium widely used for basic research, is often cultivated in a synthetic medium, BG-11, in the presence of 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) or 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid buffer. Owing to the high cost of HEPES buffer (96.9% of the total cost of BG-11 medium), the biotechnological application of BG-11 is limited. In this study, we cultured Synechocystis sp. PCC 6803 cells in BG-11 medium without HEPES buffer and examined the effects on the primary metabolism. Synechocystis sp. PCC 6803 cells could grow in BG-11 medium without HEPES buffer after adjusting for nitrogen sources and light intensity; the production rate reached 0.54 g cell dry weight·L−1·day−1, exceeding that of commercial cyanobacteria and Synechocystis sp. PCC 6803 cells cultivated under other conditions. The exclusion of HEPES buffer markedly altered the metabolites in the central carbon metabolism; particularly, the levels of compatible solutes, such as sucrose, glucosylglycerol, and glutamate were increased. Although the accumulation of sucrose and glucosylglycerol under high salt conditions is antagonistic to each other, these metabolites accumulated simultaneously in cells grown in the cost-effective medium. Because these metabolites are used in industrial feedstocks, our results reveal the importance of medium composition for the production of metabolites using cyanobacteria.  相似文献   
48.
Geleophysic dysplasia (GD) is a rare disorder characterized by severe short stature, short hands and feet, limited joint mobility, skin thickening, characteristic facial features (e.g., a “happy” face), and cardiac valvular disorders that often result in an early death. The genes ADAMTSL2 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif-like 2) and FBN1 (fibrillin 1) were recently identified as causative genes for GD. Here, we describe a 10-year-old Japanese female with GD who was born to non-consanguineous parents. At the age of 11 months, she was referred to our hospital because of very short stature for her age (− 4.4 standard deviations of the age-matched value) and a “happy” face with full cheeks, a shortened nose, hypertelorism, and a long and flat philtrum, characteristic of GD. Her hands and feet were small, her skin was thickened, and her joint mobility was generally limited. She had cardiac valvular disorders and history of recurrent respiratory failure. Mutation analysis revealed no abnormalities in ADAMTSL2. However, analysis of FBN1 revealed a novel heterozygous mutation (c.5161T > T/G) in exon 41, which encodes transforming growth factor-β-binding protein-like domain 5 (TB5). GD is an extremely rare disorder and, to our knowledge, only one case of GD with an FBN1 mutation has been reported in Japan. Similar to the previously reported cases of GD, the mutation in the current patient was located in the TB5 domain, which suggests that abnormalities in this domain of FBN1 are responsible for GD.  相似文献   
49.
The mechanisms underlying the cellular entry of the HIV-1 Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP''s behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine the kinetics of TatP initially and immediately before, at the beginning of, and immediately after entry into living cells. We report that even when the number of multivalent TatP (mTatP)-QDs bound to a cell was low, each single mTatP-QD first locally induced the cell''s lateral transport machinery to move the mTatP-QD toward the center of the cell body upon cross-linking of heparan sulfate proteoglycans. The centripetal and lateral movements were linked to the integrity and flow of actomyosin and microtubules. Individual mTatP underwent lipid raft-mediated temporal confinement, followed by complete immobilization, which ultimately led to endocytotic internalization. However, bivalent TatP did not sufficiently promote either cell surface movement or internalization. Together, these findings provide clues regarding the mechanisms of TatP cell entry and indicate that increasing the valence of TatP on nanoparticles allows them to behave as cargo delivery nanomachines.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号