首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  2017年   1篇
  2014年   4篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
31.
The effect of ammonia onl-glutamate (L-GLU) uptake was examined in cultured astrocytes. Acute ammonia treatment (5–10 mM) enhanced L-[3H]GLU uptake by 20–42% by increasing the Vmax; this persisted for 2 days and then started to decline. Ammonia, however, did not affect the uptake ofd-[3H]aspartate (D-ASP), a non-metabolizable analog of L-GLU, that uses the same transport carrier as L-GLU. Also, L-GLU uptake was not affected during the first 2 min of the assay. Thus, ammonia did not have an acute effect on L-GLU transport (translocation); rather, ammonia enhanced the accumulation or “trapping” of L-GLU or its by-products. Chronic ammonia treatment, on the other hand, inhibited L-GLU transport in astrocytes by ∼30–45% and this was due to a decrease in Vmax, suggesting that the number of L-GLU transporters was decreased. This inhibitory effect was observed after 1 day of treatment and persisted for at least 7 days. The inhibition of L-GLU transport was partially reversible following removal of ammonia. The effects of ammonia on L-GLU transport and uptake may explain the abnormal L-GLU neurotransmission observed in hyperammonemia/hepatic encephalopathy, and the brain swelling associated with fulminant hepatic failure.  相似文献   
32.
Mitochondria, being the principal source of cellular energy, are vital for cell life. Yet, ironically, they are also major mediators of cell death, either by necrosis or apoptosis. One means by which these adverse effects occur is through the mitochondrial permeability transition (mPT) whereby the inner mitochondrial membrane suddenly becomes excessively permeable to ions and other solutes, resulting in a collapse of the inner membrane potential, ultimately leading to energy failure and cell necrosis. The mPT may also bring about the release of various factors known to cause apoptotic cell death. The principal factors leading to the mPT are elevated levels of intracellular Ca2+ and oxidative stress. Characteristically, the mPT is inhibited by cyclosporin A. This article will briefly discuss the concept of the mPT, its molecular composition, its inducers and regulators, agents that influence its activity and describe the consequences of its induction. Lastly, we will review its potential contribution to acute neurological disorders, including ischemia, trauma, and toxic-metabolic conditions, as well as its role in chronic neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.  相似文献   
33.
Dibutyryl cyclic AMP (dBcAMP) is known to induce maturation and differentiation in astrocytes. As myo-inositol is an important osmoregulator in astrocytes, we examined the effects of maturation and biochemical differentiation on the kinetic properties of myo-inositol transport. Treatment of astrocytes with dBcAMP significantly decreased the Vmax of myo-inositol uptake, but the effect on Km was not significant. The myo-inositol content of astrocytes was significantly decreased in cells treated for 5 days with dBcAMP as compared with untreated controls. Maximum suppression of myo-inositol uptake occurred 7 days after exposure of astrocytes to dBcAMP; this was gradually reversible when dBcAMP was removed from the medium. After exposure to hypertonic medium for 6 h, mRNA expression of the myo-inositol co-transporter was diminished by approximately 36% in astrocytes treated with dBcAMP as compared with untreated cells. It appears that myo-inositol transporters in astrocytes treated with dBcAMP are either decreased in number or inactivated during maturation and differentiation, suggesting that the stage of differentiation and biochemical maturation of astrocytes is an important factor in osmoregulation.  相似文献   
34.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in supernatant and particulate fractions of primary cultures of rat astrocytes and its translocation by a phorbol ester were studied. We observed that 91% of protein kinase C activity in astrocytes was in the supernatant fraction, as measured by lysine-rich histone phosphorylation assay. Attempts to uncover latent activity in the particulate fraction were unsuccessful. Approximately 75% of the supernatant protein kinase C activity could be translocated to the particulate fraction by prior treatment (30-60 min) of the cultures with 100 nM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), but not with 4 alpha-phorbol, an inactive phorbol ester. Investigation of endogenous substrates for protein kinase C showed that TPA treatment brought about an increase in phosphorylation in membrane proteins and a decrease in phosphorylation of supernatant proteins. These findings indicate that the distribution of protein kinase C in astrocytes differs substantially from that in whole brain tissue, where approximately two-thirds of the protein kinase C activity is associated with the particulate fraction. Because protein kinase C is concentrated in the cytosol of astrocytes and most of this activity can be translocated to membranes, astrocytes may be particularly well-suited to respond to signals that activate phosphoinositide-linked receptors in brain.  相似文献   
35.
Distribution of glutamine synthetase in the rat central nervous system.   总被引:25,自引:0,他引:25  
The results of a light microscopic immunohistochemical study of glutamine synthetase in rat nervous system are presented. In all sites studied the enzyme was confined to astrocytes. Except for trace amounts in ependymal cells, the enzyme was not observed in other cells of the nervous system including neurons, choroid plexus, third ventricular tanycytes, subependymal cells and mesodermally-derived elements. The intensity of astrocyte staining varied in different regions with the greatest degree noted in the hippocampus and cerebellar cortex while the least was noted in brain stem, deep cerebellar nuclei and spinal cord. The glutamine synthetase content correlated well with sites of suspected glutamergic activity in keeping with the view of a critical role of astrocytes in the regulation of the putative neurotransmitter glutamic acid.  相似文献   
36.
We report here for the first time, in chick retina, Muller cell localization of glutamine synthetase (GS) activity by an immunohistochemical technique, in agreement with previous reports of glial localization of this enzyme in rat brain and retina. Age-dependent changes in the endogenous enzyme activity as well as cortisol-induced changes in GS activity, both in ovo and in vitro, measured biochemically, reflect the changes observed by staining.  相似文献   
37.
38.
Ammonia is a neurotoxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE) and other neurological disorders, and astrocytes are thought to be the principal target of ammonia toxicity. While the precise mechanisms of ammonia neurotoxicity remain to be more clearly defined, altered bioenergetics and oxidative stress appear to be critical factors in its pathogenesis. It has recently been demonstrated that pathophysiological concentrations of ammonia induce the mitochondrial permeability transition (MPT) in cultured astrocytes, a process associated with mitochondrial dysfunction, and frequently caused by oxidative stress. This study investigated the potential role of oxidative stress in the induction of the MPT by ammonia. Accordingly, the effect of various antioxidants on the induction of the MPT by ammonia in cultured astrocytes was examined. Astrocytes were subjected to NH4Cl (5 mM) treatment for 2 days with or without various antioxidants. The MPT was assessed by quantitative fluorescence imaging for the mitochondrial membrane potential (DeltaPsim), employing the potentiometric dye TMRE; by changes in mitochondrial calcein fluorescence and by 2-deoxyglucose-6-phosphate (2-DG-6-P) changes in mitochondrial permeability. Astrocytes treated with ammonia significantly dissipated the DeltaPsim, which was blocked by the MPT inhibitor, cyclosporin A, caused a decrease in mitochondrial calcein fluorescence and increased 2-DG-6-P permeability into mitochondria. All of these findings are consistent with induction of the MPT. Pretreatment with SOD, catalase, desferroxamine, Vitamin E, PBN and the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), completely blocked the ammonia-induced MPT. These data provide strong evidence that oxidative stress is involved in the induction of the MPT by ammonia, and suggest that oxidative stress and the subsequent induction of the MPT contribute to the pathogenesis of HE and other hyperammonemic disorders.  相似文献   
39.
The effect of peripheral benzodiazepine receptor (PBR) ligands on free radical production was investigated in primary cultures of rat brain astrocytes and neurons as well as in BV-2 microglial cell lines using the fluorescent dye dichlorofluorescein-diacetate. Free radical production was measured at 2, 30, 60 and 120 min of treatment with the PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5-4864) and protoporphyrin IX (PpIX) (all at 10 nm). In astrocytes, all ligands showed a significant increase in free radical production at 2 min. The increase was short-lived with PK11195, whereas with Ro5-4864 it persisted for at least 2 h. PpIX caused an increase at 2 and 30 min, but not at 2 h. Similar results were observed in microglial cells. In neurons, PK11195 and PpIX showed an increase in free radical production only at 2 min; Ro5-4864 had no effect. The central-type benzodiazepine receptor ligand, clonazepam, was ineffective in eliciting free radical production in all cell types. As the PBR may be a component of the mitochondrial permeability transition (MPT) pore, and free radical production may occur following induction of the MPT, we further investigated whether cyclosporin A (CsA), an inhibitor of the MPT, could prevent free radical formation by PBR ligands. CsA (1 micro m) completely blocked free radical production following treatment with PK11195 and Ro5-4864 in all cell types. CsA was also effective in blocking free radical production in astrocytes following PpIX treatment, but it failed to do so in neurons and microglia. Our results indicate that exposure of neural cells to PBR ligands generates free radicals, and that the MPT may be involved in this process.  相似文献   
40.
Glutathione is involved in the maintenance of the structural and functional integrity of membrane proteins, in protection against free radicals and oxidative stress, and in the detoxification of xenobiotics. The cellular uptake of cystine is the rate limiting step in the biosynthesis of glutathione. The precise mechanism for such uptake is not clear as some reports indicate that the uptake occurs through a glutamate-cystine antiporter (system X(c)(-)), whereas, others suggest that it is taken up by the glutamate transporter (system X(AG)). Our studies in cultured astrocytes derived from neonatal rats showed that glutamate, D- and L-aspartate inhibited cystine uptake; that factors that increased intracellular glutamate levels, which would have enhanced the activity of the antiporter, did not stimulate cystine uptake; that the uptake was sodium dependent and partially chloride dependent; that the b(o,+) and ASC systems, which have been shown to carry cystine in some cells, did not mediate cystine uptake in astrocytes; that glutamate uptake blockers such as L-aspartate-beta-hydroxamate (AbetaH) and L-trans-pyrrolidine-2,4-dicarboxylate (PDC), as well as cystine uptake inhibitor L-alpha-aminoadipate (AAA) potently reduced cystine uptake. Additionally, deferoxamine (100 microM) as well as ammonium chloride (5 mM), both of which inhibit glutamate uptake, also inhibited cystine uptake. Taken together, our findings indicate that astrocytes take up cystine through a similar, if not identical, system used to take up glutamate. Interference of cystine uptake by astrocytes through the glutamate transport system may have profound effects on the redox state and the structural and functional integrity of the CNS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号