首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   606篇
  免费   49篇
  2023年   5篇
  2022年   12篇
  2021年   30篇
  2020年   12篇
  2019年   17篇
  2018年   32篇
  2017年   21篇
  2016年   23篇
  2015年   38篇
  2014年   33篇
  2013年   47篇
  2012年   42篇
  2011年   35篇
  2010年   28篇
  2009年   28篇
  2008年   21篇
  2007年   29篇
  2006年   29篇
  2005年   18篇
  2004年   21篇
  2003年   14篇
  2002年   19篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1983年   4篇
  1980年   6篇
  1979年   8篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
  1965年   2篇
  1963年   1篇
排序方式: 共有655条查询结果,搜索用时 62 毫秒
651.

Globally, water resources contaminated with petroleum hydrocarbons are under much consideration due to their hazardous effects on human beings as well as on plants and animals in the ecosystem. Petroleum hydrocarbons are classified as recalcitrant pollutants in nature. These petroleum products are mostly released in the water resources during the petroleum refining process by oil refineries. The conventional clean-up technologies for hydrocarbons contaminated water have more destructive effects on the aquatic and land ecosystems. Consequently, to develop cost-effective and more environment-friendly techniques that clean up the environment and restore the marine ecosystem to its original forms. Keeping in view, this review article explores the detailed information on fabrication, cost-effectiveness, and an overview of innovation of the floating treatment wetlands (FTWs) using plants and bacterial combined functions to remediate the petroleum hydrocarbons contaminated water. The review also discusses the improvement of microbial efficacy for hydrocarbon degradation using FTWs. The review article shows the various applications of FTWs to remove different organic pollutants in petroleum hydrocarbons contaminated water. The review also describes the prospective benefits of FTWs for their multiple uses for removal of hydrocarbons, chemical oxygen demand (COD), biochemical oxygen demand (BOD), phenol, and solids from hydrocarbons contaminated water. This review widely discusses the role of hydrocarbons in degrading bacteria, and wetland plants and the mechanism involved during the remediation process of hydrocarbons in FTWs. It further demonstrates features disturbing the treatment efficiency of FTWs, and finally, it is concluded by successful applications of FTWs and various suggestions for potential future research prospects.

Graphical Abstract
  相似文献   
652.
Noreen  Sadaf  Sumrra  Sajjad H. 《Biometals》2022,35(3):519-548
BioMetals - The present study presents synthesis, characterization and first principle studies on metal chelates, (1–12), of sulfonamide-isatin reacted ligands (S1–S3). All the products...  相似文献   
653.
Effects of recombinant murine interferon-γ (rIFN-γ) on the membrane adenylate cyclase of a murine macrophage cell line (P388D1) were investigated in order to explore the nature of a signal transmitted by IFN-γ receptor. Following the incubation of P388D1 cells with 40 U/ml of rIFN-γ, the intracellular level of cAMP gradually increased about twofold over the control level within 60 min, and then began to gradually decline to about half the control level by 24 h incubation. The initial rise in cAMP level appeared to be due to the modest activation of adenylate cyclase and not due to the inhibition of cAMP-phosphodiesterase. Later decrease of intracellular cAMP may be due to quantitative down-regulation of the adenylate cyclase system. The basal enzymatic activity of the membrane prepared from P388D1 cells exposed to IFN-γ for 24 h was found to be reduced to about 20% of that of the control membrane. However, the quality of the adenylate cyclase system appeared unchanged, because the relative degree of the response of the down-regulated membrane adenylate cyclase to prostaglandin PGE2, NaF, guanylimidodiphosphate (GppNHp), cholera toxin (CT), or forskolin was found to remain unchanged. This quantitative down-regulation of adenylate cyclase must be due to the action of rIFN-γ, since the prior treatment of rIFN-γ with either acid (pH 2) or monoclonal anti-IFN-γ antibody inhibited the ability of IFN-γ to induce the down-regulation. The rIFN-γ-induced down-regulation is a reversible process, since the adenylate cyclase activity of the membrane was found to be restored when the rIFN-γ-exposed cells were cultured for 72 h in the absence of rIFN-γ. In addition, the 48 h-incubation of P388D1 cells with rIFN-β or IFN-α was found not to significantly affect the membrane adenylate cyclase system.  相似文献   
654.
Abstract

In this research, we investigated the abilities of three different concentration of sugarcane molasses as a carbon source to stimulate indigenous bacterial growth in different classes of soil, namely poorly graded sand (SP), silty sand (SM), and clayey sand (SC) (according to the Unified classification system). A total of 7, 10, and 15 days after the treatment, direct shear tests were performed on the untreated and treated samples. The calcite content on all direct shear samples was determined to further correlate it with the strength gains in the treated samples. The scanning electron microscopy (SEM) images, EDX analysis, and X-ray diffraction (XRD) patterns were taken before and after treatment for all samples to analyze the microbial-induced calcite precipitation (MICP) process. The SP soil samples showed the highest strength gains and also highest calcite content as compared with other two soil type. The peak cohesion intercept for SP-treated samples increased by 2.7–5.5 times as compared to the untreated samples for molasses concentration of 1–3?g/L, respectively. The treated samples became more dilative with the increase in molasses concentration. The sample with highest molasses concentration showed stiffer behavior in shear than the samples with lower concentration.  相似文献   
655.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号