首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   48篇
  655篇
  2023年   5篇
  2022年   12篇
  2021年   30篇
  2020年   12篇
  2019年   17篇
  2018年   32篇
  2017年   21篇
  2016年   23篇
  2015年   38篇
  2014年   33篇
  2013年   47篇
  2012年   42篇
  2011年   35篇
  2010年   28篇
  2009年   28篇
  2008年   21篇
  2007年   29篇
  2006年   29篇
  2005年   18篇
  2004年   21篇
  2003年   14篇
  2002年   19篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1983年   4篇
  1980年   6篇
  1979年   8篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
  1965年   2篇
  1963年   1篇
排序方式: 共有655条查询结果,搜索用时 15 毫秒
31.
Alar, a Pyridoxal 5′-phosphate (PLP)-dependent bacterial enzyme is responsible for the racemisation of L-alanine into D-alanine which is essential for the peptidoglycan biosynthesis in both Gram-positive and Gram-negative bacteria. In the present study, we performed induced fit docking, binding free energy calculation and molecular dynamics simulation to elucidate the Alar inhibition potential of 1,2,4-thiadiazolidine-3,5-dione-based inhibitor 1. The inhibitor binds to the hydrophobic groove of Alar and the binding was found to be stable throughout 20-ns MD simulation. Induced fit docking result showed that Lys42, Tyr46, Tyr175 and Tyr364 residues are primarily responsible for the stabilisation of inhibitor–protein complex. Further, high negative van der Waals binding free energy value of –38.88 kcal/mol, indicated it as the main driving force for the inhibitor binding. Based on the information obtained from this study, we designed few molecules as potent Alar inhibitor. In order to gain structural insight and to validate the stability of complex, we performed 20-ns MD simulation of the designed molecule D1. Results obtained from this study can be used for the design of M. tuberculosis Alar potent inhibitors lacking affinity for the co-factor PLP.  相似文献   
32.
Molecular Biology Reports - The SHANK3 gene encodes a master synaptic scaffolding protein at the excitatory synapse’s postsynaptic density, which is predominantly responsible for constructing...  相似文献   
33.
34.
35.
36.
Helophytic plants contribute significantly in phytoremediation of a variety of pollutants due to their physiological or biochemical mechanisms. Phenol, which is reported to have negative/deleterious effects on plant metabolism at concentrations higher than 500 mg/L, remains hard to be removed from the environmental compartments using conventional phytoremediation procedures. The present study aims to investigate the feasibility of using P. australis (a helophytic grass) in combination with three bacterial strains namely Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, in a floating treatment wetland (FTW) for the removal of phenol from contaminated water. The strains were screened based on their phenol degrading and plant growth promoting activities. We found that inoculated bacteria were able to colonize in the roots and shoots of P. australis, suggesting their potential role in the successful removal of phenol from the contaminated water. Pseudomonas sp. LCRH90 dominated the bacterial community structure followed by A. lowfii ACRH76 and B. cereus LORH97. The removal rate was significantly high when compared with the individual partners, i.e., plants and bacteria separately. The plant biomass, which was drastically reduced in the presence of phenol, recovered significantly with the inoculation of bacterial consortia. Likewise, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total organic carbon (TOC) is achieved when both plants and bacteria were employed. The study, therefore, suggests that P. australis in combination with efficient bacteria can be a suitable choice to FTWs for phenol-degradation in water.  相似文献   
37.
Protection of telomere 1 (POT1) is one of the key components of shelterin complex, implicated in maintaining the telomere homeostasis, and thus stability of the eukaryotic genome. A large number of non-synonymous single nucleotide polymorphisms (nsSNPs) in the POT1 gene have been reported to cause varieties of human diseases, including cancer. In recent years, a number of mutations in POT1 has been markedly increased, and interpreting the effect of these large numbers of mutations to understand the mechanism of associated diseases seems impossible using experimental approaches. Herein, we employ varieties of computational methods such as PROVEAN, PolyPhen-2, SIFT, PoPMuSiC, SDM2, STRUM, and MAESTRO to identify the effects of 387 nsSNPs on the structure and function of POT1 protein. We have identified about 183 nsSNPs as deleterious and termed them as “high-confidence nsSNPs.” Distribution of these high-confidence nsSNPs demonstrates that the mutation in oligonucleotide binding domain 1 is highly deleterious (one in every three nsSNPs), and high-confidence nsSNPs show a strong correlation with residue conservation. The structure analysis provides a detailed insights into the structural changes occurred in consequence of conserved mutations which lead to the cancer progression. This study, for the first time, offers a newer prospective on the role of POT1 mutations on the structure, function, and their relation to associated diseases.  相似文献   
38.
The extent to which plant communities are determined by resource availability is a central theme in ecosystem science, but patterns of small-scale variation in resource availability are poorly known. Studies of carbon (C) and nutrient cycling provide insights into factors limiting tree growth and forest productivity. To investigate rates of tropical forest litter production and decomposition in relation to nutrient availability and topography in the absence of confounding large-scale variation in climate and altitude we quantified nutrient fluxes via litterfall and leaf litter decomposition within three distinct floristic associations of tropical rain forest growing along a soil fertility gradient at the Sepilok Forest Reserve (SFR), Sabah, Malaysia. The quantity and nutrient content of small litter decreased along a gradient of soil nutrient availability from alluvial forest (most fertile) through sandstone forest to heath forest (least fertile). Temporal variation in litterfall was greatest in the sandstone forest, where the amount of litter was correlated negatively with rainfall in the previous month. Mass loss and N and P release were fastest from alluvial forest litter, and slowest from heath forest litter. All litter types decomposed most rapidly in the alluvial forest. Stand-level N and P use efficiencies (ratios of litter dry mass to nutrient content) were greatest for the heath forest followed by the sandstone ridge, sandstone valley and alluvial forests, respectively. We conclude that nutrient supply limits productivity most in the heath forest and least in the alluvial forest. Nutrient supply limited productivity in sandstone forest, especially on ridge and hill top sites where nutrient limitation may be exacerbated by reduced rates of litter decomposition during dry periods. The fluxes of N and P varied significantly between the different floristic communities at SFR and these differences may contribute to small-scale variation in species composition.  相似文献   
39.
40.
The nest is a protein motif of three consecutive amino acid residues with dihedral angles 1,2‐αRαL (RL nests) or 1,2‐αLαR (LR nests). Many nests form a depression in which an anion or δ‐negative acceptor atom is bound by hydrogen bonds from the main chain NH groups. We have determined the extent and nature of this bridging in a database of protein structures using a computer program written for the purpose. Acceptor anions are bound by a pair of bridging hydrogen bonds in 40% of RL nests and 20% of LR nests. Two thirds of the bridges are between the NH groups at Positions 1 and 3 of the motif (N1N3‐bridging)—which confers a concavity to the nest; one third are of the N2N3 type—which does not. In bridged LR nests N2N3‐bridging predominates (14% N1N3: 75% N2N3), whereas in bridged RL nests the reverse is true (69% N1N3: 25% N2N3). Most bridged nests occur within larger motifs: 45% in (hexapeptide) Schellman loops with an additional 4 → 0 hydrogen bond (N1N3), 11% in Schellman loops with an additional 5 → 1 hydrogen bond (N2N3), 12% in a composite structure including a type 1β‐bulge loop and an asx‐ or ST‐ motif (N1N3)—remarkably homologous to the N1N3‐bridged Schellman loop—and 3% in a composite structure including a type 2β‐bulge loop and an asx‐motif (N2N3). A third hydrogen bond is a previously unrecognized feature of Schellman loops as those lacking bridged nests have an additional 4 → 0 hydrogen bond. Proteins 2014; 82:3023–3031. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号