首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   10篇
  2022年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
81.
In zebra finches, only males sing, and the neural regions controlling song exhibit prominent, hormone-induced sex differences in neuron number. In order to understand how sexual differentiation regulates neuron number within one song nucleus, the lateral magnocellular nucleus of the anterior neostriatum (IMAN), we studied the development of sex differences among IMAN neurons that project to the robust nucleus of the archistriatum (RA). The IMAN is implicated in song learning, and previous ontogenetic studies have indicated that males lose over 50% of their IMAN neurons during the juvenile song learning period. Based on developmental changes in both the extent of androgen accumulation within the IMAN and its appearance in Nissl-stained tissue, it had been hypothesized that IMAN neuron loss was even greater in young females, resulting in sex differences in neuron number. However, this hypothesis has not been tested directly because the Nissl-stained boundaries of the IMAN sometimes are ambiguous in young animals, and are not evident at all in adult females. To circumvent these problems, we employed the retrograde tracer fast blue to study the development of IMAN neurons defined on the basis of their projections to the RA. We find that the number of these IMAN-RA projection neurons is much greater in adult males than in females, and that this sex difference develops during the juvenile period of sexual differentiation and song learning because a significant number of these neurons are lost in females but not in males. With respect to sexual differentiation, we conclude that masculinization (which is stimulated by the hormone estradiol) promotes the retention of IMAN-RA projection neurons. In addition, our results indicate that any loss of IMAN neurons that may occur in young males does not include cells projecting to the RA.  相似文献   
82.
During song learning in birds, neurons are added to some song nuclei and lost from others. Previous studies have been unable to distinguish whether these neural changes are uniquely associated with memorizing a song model (sensory acquisition) or vocal practice (sensorimotor learning). In this study we measured changes in neuron number within song nuclei of swamp sparrows, a species in which the two phases of song learning are nonoverlapping. Male swamp sparrows were collected as hatchlings and tape-tutored from approximately 22 to 62 days of age. Swamp sparrows memorize about 60% of their song material during this period, but do not begin practicing this learned material until approximately 275 days of age. Birds were sacrificed at 23, 41, 61, 71, 274, or 340 days of age. During sensory acquisition, neuron number increased drastically in both the caudal nucleus of the ventral hyperstriatum (HVc) and Area X. The period of sensorimotor learning was not associated with any further changes in neuron number within these regions. We were unable to detect any significant changes in neuron number within the magnocellular nucleus of the neostriatum or the robust nucleus of the archistriatum during either stage of song learning. These results raise the possibility that ongoing addition of HVc and Area X neurons may encourage, and thereby temporally restrict, song acquisition.  相似文献   
83.
84.
85.
86.
All songbirds learn to sing during postnatal development but then display species differences in the capacity to learn song in adulthood. While the mechanisms that regulate avian vocal plasticity are not well characterized, one contributing factor may be the composition of N-methyl-D-aspartate receptors (NMDAR). Previous studies of an anterior forebrain pathway implicated in vocal plasticity revealed significant regulation of NMDAR subunit expression during the developmental sensitive period for song learning. Much less is known about the developmental regulation of NMDAR subunit expression in regions that participate more directly in motor aspects of song behavior. We show here that an increase in NR2A subunit mRNA and a decrease in NR2B subunit mRNA within the vocal motor pathway accompany song learning in zebra finches; however, manipulations that can alter the timing of song learning did not alter the course of these developmental changes. We also tested whether adult deafening, a treatment that provokes vocal change in songbirds that normally sing a stable song throughout adulthood, would render NMDAR subunit expression more similar to that observed developmentally. We report that NR2A and NR2B mRNA levels did not change within the anterior forebrain or vocal motor pathways after adult deafening, even after substantial changes in song structure. These results indicate that vocal plasticity does not require "juvenile patterns" of NMDAR gene expression in the avian song system.  相似文献   
87.
Wang SY  Ahn BS  Harris R  Nordeen SK  Shapiro DJ 《BioTechniques》2004,37(5):807-8, 810-7
To analyze the interactions of steroid/nuclear hormone receptors with their DNA response elements, we used ultra low-volume microplates to develop a simple and rapid fluorescence anisotropy assay. The novel fluorescence anisotropy microplate assay (FAMA) was applied to the binding of estrogen and progesterone receptors (ER and PR, respectively) to their respective DNA response elements. The FAMA offers exceptional flexibility in its ability to test a variety of binding conditions and DNA response elements in real time. This assay can differentiate between, and quantitate, sequence-specific and nonspecific binding of receptors to DNA and offers the possibility of true solution analysis of the interaction of coregulators with the estrogen response element (ERE)-ER complex. To test suitability for screening large compound libraries, we demonstrated that the FAMA generates stable signals for more than 4 hours, is insensitive to inhibition by dimethyl sulfoxide (DMSO), and works well in 384-well plates. We analyzed inhibition of receptor-DNA interaction by several zinc chelators and demonstrated zinc dependence and a generally higher sensitivity to inhibition for PR-progesterone response element (PRE) interactions than for ER-ERE interactions. The FAMA is the first system suitable for screening large compound libraries to identify novel compounds that antagonize (or stimulate) binding of steroid receptors to their DNA response elements.  相似文献   
88.
89.
The Golgi complex is present in every eukaryotic cell and functions in posttranslational modifications and sorting of proteins and lipids to post-Golgi destinations. Both functions require an acidic lumenal pH and transport of substrates into and by-products out of the Golgi lumen. Endogenous ion channels are expected to be important for these features, but none has been described. Ion channels from an enriched Golgi fraction cleared of transiting proteins were incorporated into planar lipid bilayers. Eighty percent of the single-channel recordings revealed the same anion channel. This channel has novel properties and has been named GOLAC (Golgi anion channel). The channel has six subconductance states with a maximum conductance of 130 pS, is open over 95% of the time, and is not voltage-gated. Significant for Golgi function, the channel conductance is increased by reduction of pH on the lumenal surface. This channel may serve two nonexclusive functions: providing counterions for the acidification of the Golgi lumen by the H(+)-ATPase and removal of inorganic phosphate generated by glycosylation and sulfation of proteins and lipids in the Golgi.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号