首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   1篇
  国内免费   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   8篇
  2012年   8篇
  2011年   12篇
  2010年   1篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
51.
Seven new 23-oxo-cholestane derivatives named as grandol A (1), B (2), C (3), D (4), E (5), F (6), and G (7) were isolated from Dysoxylum grande leaves alongside with a new 3,4-secodammar-4(28)-en-3-oic acid derivative (8). The structures of the compounds were elucidated based on the interpretation of spectroscopic data, and their relative configurations were established by NOESY 2D NMR data. All of the isolates were tested for anti-acetylcholinesterase activity using thin layer chromatography (TLC)-bioautography with fast blue B salt. Only grandol A (1) and B (2) showed positive results, with clear discoloration at a concentration of 12.5 ppm. However, the obtained IC50 values for grandol A and B, when using Ellman’s method, were not significant (>200 μg/ml).  相似文献   
52.
Biological Trace Element Research - The aim of the present study was to evaluate serum concentrations of copper (Cu) and zinc (Zn), in relation with metabolic profile and clinicopathologic features...  相似文献   
53.
Root gravitropism describes the orientation of root growth along the gravity vector and is mediated by differential cell elongation in the root meristem. This response requires the coordinated, asymmetric distribution of the phytohormone auxin within the root meristem, and depends on the concerted activities of PIN proteins and AUX1 - members of the auxin transport pathway. Here, we show that intracellular trafficking and proteasome activity combine to control PIN2 degradation during root gravitropism. Following gravi-stimulation, proteasome-dependent variations in PIN2 localization and degradation at the upper and lower sides of the root result in asymmetric distribution of PIN2. Ubiquitination of PIN2 occurs in a proteasome-dependent manner, indicating that the proteasome is involved in the control of PIN2 turnover. Stabilization of PIN2 affects its abundance and distribution, and leads to defects in auxin distribution and gravitropic responses. We describe the effects of auxin on PIN2 localization and protein levels, indicating that redistribution of auxin during the gravitropic response may be involved in the regulation of PIN2 protein.  相似文献   
54.
55.
56.
Phytochemical studies on the leaves and trunk bark of Garcinia cantleyana yielded five caged-xanthonoids including one tetra- and four tri-prenylated xanthones, cantleyanone A (1), 7-hydroxyforbesione (2) and cantleyanones B-D (4-6), as well as a simple xanthone, 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone (3). Eight other known compounds, deoxygaudichaudione A, gaudichaudione H, friedelin, garbogiol, macranthol, glutin-5-en-3beta-ol, and a mixture of sitosterol and stigmasterol were also isolated. Their structures were elucidated by means of spectroscopic data and comparison of their NMR data with literature values. Significant cytotoxicity against MDA-MB-231, CaOV-3, MCF-7 and HeLa cancer cell-lines was demonstrated by cantleyanones B-D, 7-hydroxyforbesione, deoxygaudichaudione A and macranthol, with IC(50) values ranging from 0.22 to 17.17 microg/ml.  相似文献   
57.
Two new xanthones, characterized as 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone (1) and penangianaxanthone (2), with three known xanthones, cudratricusxanthone H (3), macluraxanthone C (4) and gerontoxanthone C (5), as well as friedelin and stigmasterol were isolated from the leaves of Garcinia penangiana. Their structures were elucidated by analysis of spectroscopic data and comparison of the NMR data with the literature ones. Significant cytotoxicity against DU-145, MCF-7 and NCI-H460 cancer cell lines was demonstrated by compounds 1-5, with IC50 values ranging from 3.5 to 72.8 microM.  相似文献   
58.
59.
IntroductionExosome nanoparticles carry a composite cargo, including microRNAs (miRs). Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG) surgery, we investigated if: 1) exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2) circulating exosomes and exosomal cardiac miRs correlate with cardiac troponin (cTn), the current “gold standard” surrogate biomarker of myocardial damage.ConclusionsThe plasma concentrations of exosomes and their cargo of cardiac miRs increased in patients undergoing CABG and were positively correlated with hs-cTnI. These data provide evidence that CABG induces the trafficking of exosomes from the heart to the peripheral circulation. Future studies are necessary to investigate the potential of circulating exosomes as clinical biomarkers in cardiac patients.  相似文献   
60.
Fasciclin‐like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI‐anchored, is highly N‐glycosylated and carries two O‐glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino‐proximal fasciclin 1 domain and was unaffected by removal of the GPI‐modification signal, a highly conserved N‐glycan or the deletion of predicted O‐glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)‐exit and plasma membrane localization of FLA4, with N‐glycosylation acting at the level of ER‐exit and O‐glycosylation influencing post‐secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy‐proximal fasciclin 1 domain and that its amino‐proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy‐proximal Fas1 domain and its normal cellular trafficking depends on N‐ and O‐glycosylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号