首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1971篇
  免费   190篇
  国内免费   2篇
  2023年   8篇
  2022年   26篇
  2021年   57篇
  2020年   16篇
  2019年   39篇
  2018年   37篇
  2017年   33篇
  2016年   61篇
  2015年   97篇
  2014年   103篇
  2013年   123篇
  2012年   168篇
  2011年   144篇
  2010年   115篇
  2009年   91篇
  2008年   124篇
  2007年   114篇
  2006年   104篇
  2005年   89篇
  2004年   77篇
  2003年   72篇
  2002年   84篇
  2001年   21篇
  2000年   23篇
  1999年   23篇
  1998年   23篇
  1997年   16篇
  1996年   9篇
  1995年   17篇
  1994年   14篇
  1993年   18篇
  1992年   21篇
  1991年   12篇
  1990年   11篇
  1989年   16篇
  1988年   14篇
  1987年   13篇
  1986年   11篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1981年   6篇
  1979年   8篇
  1978年   9篇
  1977年   6篇
  1976年   5篇
  1971年   5篇
  1970年   4篇
  1968年   4篇
  1964年   4篇
排序方式: 共有2163条查询结果,搜索用时 31 毫秒
81.
When recombinant DNA technology was developed more than 40 years ago, no one could have imagined the impact it would have on both society and the scientific community. In the field of genetic engineering, the most important tool developed was the plasmid vector. This technology has been continuously expanding and undergoing adaptations. Here, we provide a detailed view following the evolution of vectors built throughout the years destined to study microorganisms and their peculiarities, including those whose genomes can only be revealed through metagenomics. We remark how synthetic biology became a turning point in designing these genetic tools to create meaningful innovations. We have placed special focus on the tools for engineering bacteria and fungi (both yeast and filamentous fungi) and those available to construct metagenomic libraries. Based on this overview, future goals would include the development of modular vectors bearing standardized parts and orthogonally designed circuits, a task not fully addressed thus far. Finally, we present some challenges that should be overcome to enable the next generation of vector design and ways to address it.  相似文献   
82.
The formation of ecotypes has been invoked as an important driver of postglacial biodiversity, because many species colonized heterogeneous habitats and experienced divergent selection. Ecotype formation has been predominantly studied in outcrossing taxa, while far less attention has been paid to the implications of mating system shifts. Here, we addressed whether substrate‐related ecotypes exist in selfing and outcrossing populations of Arabidopsis lyrata subsp. lyrata and whether the genomic footprint differs between mating systems. The North American subspecies colonized both rocky and sandy habitats during postglacial range expansion and shifted the mating system from predominantly outcrossing to predominantly selfing in a number of regions. We performed an association study on pooled whole‐genome sequence data of 20 selfing or outcrossing populations, which suggested genes involved in adaptation to substrate. Motivated by enriched gene ontology terms, we compared root growth between plants from the two substrates in a common environment and found that plants originating from sand grew roots faster and produced more side roots, independent of mating system. Furthermore, single nucleotide polymorphisms associated with substrate‐related ecotypes were more clustered among selfing populations. Our study provides evidence for substrate‐related ecotypes in A. lyrata and divergence in the genomic footprint between mating systems. The latter is the likely result of selfing populations having experienced divergent selection on larger genomic regions due to higher genome‐wide linkage disequilibrium.  相似文献   
83.
Acute myeloid leukemia (AML) is characterized by fast progression and low survival rates, in which Fms-like tyrosine kinase 3 (FLT3) receptor mutations have been identified as a driver mutation in cancer progression in a subgroup of AML patients. Clinical trials have shown emergence of drug resistant mutants, emphasizing the ongoing need for new chemical matter to enable the treatment of this disease. Here, we present the discovery and topological structure-activity relationship (SAR) study of analogs of isoquinolinesulfonamide H-89, a well-known PKA inhibitor, as FLT3 inhibitors. Surprisingly, we found that the SAR was not consistent with the observed binding mode of H-89 in PKA. Matched molecular pair analysis resulted in the identification of highly active sub-nanomolar azaindoles as novel FLT3-inhibitors. Structure based modelling using the FLT3 crystal structure suggested an alternative, flipped binding orientation of the new inhibitors.  相似文献   
84.
Spatial environmental heterogeneity coupled with dispersal can promote ecological persistence of diverse metacommunities. Does this premise hold when metacommunities evolve? Using a two‐resource competition model, we studied the evolution of resource‐uptake specialisation as a function of resource type (substitutable to essential) and shape of the trade‐off between resource uptake affinities (generalist‐ to specialist‐favouring). In spatially homogeneous environments, evolutionarily stable coexistence of consumers is only possible for sufficiently substitutable resources and specialist‐favouring trade‐offs. Remarkably, these same conditions yield comparatively low diversity in heterogeneous environments, because they promote sympatric evolution of two opposite resource specialists that, together, monopolise the two resources everywhere. Consumer diversity is instead maximised for intermediate trade‐offs and clearly substitutable or clearly essential resources, where evolved metacommunities are characterised by contrasting selection regimes. Taken together, our results present new insights into resource‐competition‐mediated evolutionarily stable diversity in homogeneous and heterogeneous environments, which should be applicable to a wide range of systems.  相似文献   
85.
86.
AC70R1-504 Escherichia coli mutants possess a glgC* gene with a nucleotide change resulting in a premature stop codon that renders a truncated, inactive form of GlgC. Cells over-expressing the wild type glgC, but not those over-expressing the AC70R1-504 glgC*, accumulated high ADPglucose and glycogen levels. AC70R1-504 mutants accumulated glycogen, whereas DeltaglgCAP deletion mutants lacking the whole glycogen biosynthetic machinery displayed a glycogen-less phenotype. AC70R1-504 cells with enhanced glycogen synthase activity accumulated high glycogen levels. By contrast, AC70R1-504 cells with high ADPG hydrolase activity accumulated low glycogen. These data further confirm that enterobacteria possess various sources of ADPglucose linked to glycogen biosynthesis.  相似文献   
87.
Escherichia coli ADP-sugar pyrophosphatase (AspP) is a "Nudix" hydrolase that catalyzes the hydrolytic breakdown of ADP-glucose linked to glycogen biosynthesis. Moderate increases of AspP activity in the cell are accompanied by significant reductions of the glycogen content. In vitro analyses showed that AspP activity is strongly enhanced by macromolecular crowding and by both glucose-1,6-bisphosphate and nucleotide-sugars, providing a first set of indicative evidences that AspP is a highly regulated enzyme. To our knowledge, AspP is the sole bacterial enzyme described to date which is activated by both G1,6P(2) and nucleotide-sugars.  相似文献   
88.
The rapid reaction kinetics of wild-type xanthine dehydrogenase from Rhodobacter capsulatus and variants at Arg-310 in the active site have been characterized for a variety of purine substrates. With xanthine as substrate, k(red) (the limiting rate of enzyme reduction by substrate at high [S]) decreased approximately 20-fold in an R310K variant and 2 x 10(4)-fold in an R310M variant. Although Arg-310 lies on the opposite end of the substrate from the C-8 position that becomes hydroxylated, its interaction with substrate still contributed approximately 4.5 kcal/mol toward transition state stabilization. The other purines examined fell into two distinct groups: members of the first were effectively hydroxylated by the wild-type enzyme but were strongly affected by the exchange of Arg-310 to methionine (with a reduction in k(red) greater than 10(3)), whereas members of the second were much less effectively hydroxylated by wild-type enzyme but also much less significantly affected by the amino acid exchanges (with a reduction in k(red) less than 50-fold). The effect was such that the 4000-fold range in k(red) seen with wild-type enzyme was reduced to a mere 4-fold in the R310M variant. The data are consistent with a model in which "good" substrates are bound "correctly" in the active site in an orientation that allows Arg-310 to stabilize the transition state for the first step of the overall reaction via an electrostatic interaction at the C-6 position, thereby accelerating the reaction rate. On the other hand, "poor" substrates bound upside down relative to this "correct" orientation. In so doing, they are unable to avail themselves of the additional catalytic power provided by Arg-310 in wild-type enzyme but, for this reason, are significantly less affected by mutations at this position. The kinetic data thus provide a picture of the specific manner in which the physiological substrate xanthine is oriented in the active site relative to Arg-310 and how this residue is used catalytically to accelerate the reaction rate (rather than simply bind substrate) despite being remote from the position that is hydroxylated.  相似文献   
89.
We have assigned 1H, 15N and 13C resonances of the RGS domain from the human RGS14 protein, a multi-domain member of the RGS (Regulators of G-protein signalling) family of proteins, important in the down-regulation of specific G-protein signalling pathways.  相似文献   
90.
The polypeptides integrating amaranth globulin-p and 11S-globulin were characterized by two-dimensional electrophoresis, ion-exchange chromatography and RP-HPLC. All polypeptides exhibited charge and hydrophobic heterogeneity. Almost all acid (A, pI 5–7) and basic (B, pI 9–10) polypeptides were present in both globulins, and the same happened with the unprocessed M polypeptides with pI in the range of 7–7.5 which fits well with a sequence containing both the A and B polypeptides. There were other polypeptides only present in 11S-globulin, like some of 41 and 16 kDa, which might come from another precursor or be the products of a different processing of the propolypeptide. These results suggested that, although amaranth subunits from different subfamilies are interchangeable in different oligomers, some structural differences between them might affect the assembly of globulin molecules. Structural differences arising from this behavior could account for the different physicochemical properties of globulin molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号