首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1573篇
  免费   131篇
  国内免费   2篇
  2023年   7篇
  2022年   11篇
  2021年   51篇
  2020年   18篇
  2019年   34篇
  2018年   34篇
  2017年   28篇
  2016年   51篇
  2015年   83篇
  2014年   91篇
  2013年   104篇
  2012年   147篇
  2011年   122篇
  2010年   96篇
  2009年   76篇
  2008年   104篇
  2007年   95篇
  2006年   82篇
  2005年   71篇
  2004年   64篇
  2003年   55篇
  2002年   75篇
  2001年   15篇
  2000年   9篇
  1999年   6篇
  1998年   20篇
  1997年   13篇
  1996年   6篇
  1995年   13篇
  1994年   6篇
  1993年   10篇
  1992年   11篇
  1991年   8篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1984年   5篇
  1981年   4篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1974年   3篇
  1971年   4篇
  1968年   3篇
  1967年   2篇
  1965年   2篇
  1964年   4篇
  1957年   2篇
排序方式: 共有1706条查询结果,搜索用时 546 毫秒
51.
AC70R1-504 Escherichia coli mutants possess a glgC* gene with a nucleotide change resulting in a premature stop codon that renders a truncated, inactive form of GlgC. Cells over-expressing the wild type glgC, but not those over-expressing the AC70R1-504 glgC*, accumulated high ADPglucose and glycogen levels. AC70R1-504 mutants accumulated glycogen, whereas DeltaglgCAP deletion mutants lacking the whole glycogen biosynthetic machinery displayed a glycogen-less phenotype. AC70R1-504 cells with enhanced glycogen synthase activity accumulated high glycogen levels. By contrast, AC70R1-504 cells with high ADPG hydrolase activity accumulated low glycogen. These data further confirm that enterobacteria possess various sources of ADPglucose linked to glycogen biosynthesis.  相似文献   
52.
Escherichia coli ADP-sugar pyrophosphatase (AspP) is a "Nudix" hydrolase that catalyzes the hydrolytic breakdown of ADP-glucose linked to glycogen biosynthesis. Moderate increases of AspP activity in the cell are accompanied by significant reductions of the glycogen content. In vitro analyses showed that AspP activity is strongly enhanced by macromolecular crowding and by both glucose-1,6-bisphosphate and nucleotide-sugars, providing a first set of indicative evidences that AspP is a highly regulated enzyme. To our knowledge, AspP is the sole bacterial enzyme described to date which is activated by both G1,6P(2) and nucleotide-sugars.  相似文献   
53.
The rapid reaction kinetics of wild-type xanthine dehydrogenase from Rhodobacter capsulatus and variants at Arg-310 in the active site have been characterized for a variety of purine substrates. With xanthine as substrate, k(red) (the limiting rate of enzyme reduction by substrate at high [S]) decreased approximately 20-fold in an R310K variant and 2 x 10(4)-fold in an R310M variant. Although Arg-310 lies on the opposite end of the substrate from the C-8 position that becomes hydroxylated, its interaction with substrate still contributed approximately 4.5 kcal/mol toward transition state stabilization. The other purines examined fell into two distinct groups: members of the first were effectively hydroxylated by the wild-type enzyme but were strongly affected by the exchange of Arg-310 to methionine (with a reduction in k(red) greater than 10(3)), whereas members of the second were much less effectively hydroxylated by wild-type enzyme but also much less significantly affected by the amino acid exchanges (with a reduction in k(red) less than 50-fold). The effect was such that the 4000-fold range in k(red) seen with wild-type enzyme was reduced to a mere 4-fold in the R310M variant. The data are consistent with a model in which "good" substrates are bound "correctly" in the active site in an orientation that allows Arg-310 to stabilize the transition state for the first step of the overall reaction via an electrostatic interaction at the C-6 position, thereby accelerating the reaction rate. On the other hand, "poor" substrates bound upside down relative to this "correct" orientation. In so doing, they are unable to avail themselves of the additional catalytic power provided by Arg-310 in wild-type enzyme but, for this reason, are significantly less affected by mutations at this position. The kinetic data thus provide a picture of the specific manner in which the physiological substrate xanthine is oriented in the active site relative to Arg-310 and how this residue is used catalytically to accelerate the reaction rate (rather than simply bind substrate) despite being remote from the position that is hydroxylated.  相似文献   
54.
The polypeptides integrating amaranth globulin-p and 11S-globulin were characterized by two-dimensional electrophoresis, ion-exchange chromatography and RP-HPLC. All polypeptides exhibited charge and hydrophobic heterogeneity. Almost all acid (A, pI 5–7) and basic (B, pI 9–10) polypeptides were present in both globulins, and the same happened with the unprocessed M polypeptides with pI in the range of 7–7.5 which fits well with a sequence containing both the A and B polypeptides. There were other polypeptides only present in 11S-globulin, like some of 41 and 16 kDa, which might come from another precursor or be the products of a different processing of the propolypeptide. These results suggested that, although amaranth subunits from different subfamilies are interchangeable in different oligomers, some structural differences between them might affect the assembly of globulin molecules. Structural differences arising from this behavior could account for the different physicochemical properties of globulin molecules.  相似文献   
55.
A new leucyl aminopeptidase activity has been identified in the fission yeast Schizosaccharomyces pombe. The enzyme, which has been purified and named leucyl aminopeptidase yspII (LAP yspII), had a molecular mass of 320 and 54 kDa by gel filtration and SDS/PAGE, respectively, suggesting a homohexameric structure. The enzyme cleaved synthetic aminoacyl-4-nitroanilides at an optimum of pH 8.5, and preferred leucine and methionine as N-terminal amino acids. A clear dependence on Mn2+ concentration for activity was found, and an apparent association constant of 0.33 mM was calculated for the metal ion. Bestatin behaved as a competitive inhibitor of LAP yspII (K(i) = 0.14 microM), while chelating agents such as chloroquine, EDTA and 1,10-phenanthroline also reduced enzyme activity. A MALDI-MS analysis, followed by sequencing of two of the resulting peptides, showed that LAP yspII undoubtedly corresponds to the putative aminopeptidase C13A11.05 identified in the S. pombe genome project. The protein exhibited nearly 40% sequence identity to fungal and mammalian aminopeptidases belonging to the M17 family of metallopeptidases. Catalytic residues (Lys292 and Arg366), as well as those involved in coordination with the cocatalytic metal ions (Lys280, Asp285, Asp303, Asp362 and Glu364) and those forming the hydrophobic pocket for substrate binding (Met300, Asn360, Ala363, Thr390, Leu391, Ala483 and Met486), were perfectly conserved among all known aminopeptidases. The S. pombe enzyme is predicted to be formed two clearly distinguished domains with a well conserved C-terminal catalytic domain showing a characteristic topology of eight beta-sheets surrounded by alpha-helical segments in the form of a saddle.  相似文献   
56.
Using tagged and recaptured Atlantic salmon Salmo salar (n = 106) the present analysis shows that the most commonly applied linear back-calculation method for estimating past length, the Dahl-Lea method, resulted in overestimation of the length of large smolts and underestimation of small smolts. A correction equation (y = 0.53x + 6.23) for estimating true smolt length (y) from lengths back-calculated from adult scale measures (x) to account for these systematic discrepancies is proposed.  相似文献   
57.
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with “build-your-own” microbial host.  相似文献   
58.
When Candida tropicalis was grown on phenol, catechol or resorcinol, the highest levels of specific activity of phenol hydroxylase (EC. 1.14.13.7) and catechol 1,2-dioxygenase (EC. 1.13.11.1) were attained with phenol. With the three aromatic compounds tested, the yeast cells exhibited sharp peaks of specific activity of both enzymes at particular incubation times. Phenol-induced cells containing high levels of both enzymes were capable of degrading rapidly and without delay 4-chlorophenol and 2,6-dichlorophenol, and to a lesser extend pentachlorophenol. However, the yeast could not grow on chlorophenols as major carbon and energy source.  相似文献   
59.
Recently, we isolated the sulfite oxidase (SO) gene from Arabidopsis thaliana and characterized the purified SO protein. The purpose of the present study was to determine the subcellular localization of this novel plant enzyme. Immunogold electron-microscopic analysis showed the gold labels nearly exclusively in the peroxisomes. To verify this finding, green fluorescent protein was fused to full-length plant SO including the putative peroxisomal targeting signal 1 (PTS1) 'SNL' and expressed in tobacco leaves. Our results showed a punctate fluorescence pattern resembling that of peroxisomes. Co-labelling with MitoTracker-Red excluded that the observed fluorescence was due to mitochondrial sorting. By investigation of deleted or mutated PTS1, no functional peroxisomal targeting signal 2 (PTS2) could be detected in plant SO. This conclusion is supported by expression studies in Pichia pastoris mutants with defined defects either in PTS1- or PTS2-mediated peroxisomal import.  相似文献   
60.
A series of novel fluoroalkyl-containing tropane derivatives (6-8, 10-14, 17, and 18) were synthesized from cocaine. Novel compounds were evaluated for affinity and selectivity in competitive radioligand binding assays selective for cerebral serotonin (5-HT), dopamine (DA), and norepinephrine (NE) transporters (SERT, DAT, and NET). The nortropane-fluoroalkyl esters (7, 10, 11) were most potent for SERT (K(i): 0.18, 0.24, and 0.30 nM, respectively). Tosylate esters 17 and 18, synthesized as precursors for [(18)F]-labeled, Positron Emission Tomography (PET) imaging agents, also showed high affinity for DAT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号