首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94402篇
  免费   389篇
  国内免费   902篇
  95693篇
  2023年   6篇
  2022年   23篇
  2021年   50篇
  2020年   16篇
  2019年   36篇
  2018年   11862篇
  2017年   10690篇
  2016年   7493篇
  2015年   662篇
  2014年   362篇
  2013年   380篇
  2012年   4329篇
  2011年   12904篇
  2010年   12074篇
  2009年   8285篇
  2008年   9861篇
  2007年   11438篇
  2006年   322篇
  2005年   560篇
  2004年   1013篇
  2003年   1062篇
  2002年   838篇
  2001年   267篇
  2000年   163篇
  1999年   29篇
  1998年   27篇
  1997年   34篇
  1996年   14篇
  1995年   13篇
  1994年   12篇
  1993年   39篇
  1992年   31篇
  1991年   42篇
  1990年   11篇
  1989年   14篇
  1988年   21篇
  1987年   19篇
  1986年   5篇
  1984年   12篇
  1983年   19篇
  1977年   5篇
  1975年   5篇
  1972年   247篇
  1971年   278篇
  1970年   7篇
  1965年   15篇
  1962年   25篇
  1956年   6篇
  1944年   13篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
991.
A superoxide dismutase (SOD) gene of Thermoascus aurantiacus var. levisporus, a thermophilic fungus, was cloned, sequenced, and expressed in Pichia pastoris and its gene product was characterized. The coding sequence predicted a 231 residues protein with a unique 35 amino acids extension at the N-terminus indicating a mitochondrial-targeting sequence. The content of Mn was 2.46 μg/mg of protein and Fe was not detected in the purified enzyme. The enzyme was found to be inhibited by NaN3, but not by KCN or H2O2. These results suggested that the SOD in Thermoascus aurantiacus var. levisporus was the manganese superoxide dismutase type. In comparison with other MnSODs, all manganese-binding sites were also conserved in the sequence (H88, H136, D222, H226). The molecular mass of a single band of the enzyme was estimated to be 21.7 kDa. The protein was expressed in tetramer form with molecular weight of 68.0 kDa. The activity of purified protein was 2,324 U/mg. The optimum temperature of the enzyme was 55°C and it exhibited maximal activity at pH 7.5. The enzyme was thermostable at 50 and 60°C and the half-life at 80°C was approximately 40 min.  相似文献   
992.
Dendrites and the dendritic spines of neurons play key roles in the connectivity of the brain and have been recognized as the locus of long-term synaptic plasticity, which is correlated with learning and memory. The development of dendrites and spines in the mammalian central nervous system is a complex process that requires specific molecular events over a period of time. It has been shown that specific molecules are needed not only at the spine’s point of contact, but also at a distance, providing signals that initiate a cascade of events leading to synapse formation. The specific molecules that act to signal neuronal differentiation, dendritic morphology, and synaptogenesis are tightly regulated by genetic and epigenetic programs. It has been shown that the dendritic spine structure and distribution are altered in many diseases, including many forms of mental retardation (MR), and can also be potentiated by neuronal activities and an enriched environment. Because dendritic spine pathologies are found in many types of MR, it has been proposed that an inability to form normal spines leads to the cognitive and motor deficits that are characteristic of MR. Epigenetic mechanisms, including DNA methylation, chromatin remodeling, and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. The study of epigenetics focuses on cellular effects that result in a heritable pattern of gene expression without changes to genomic encoding. Despite extensive efforts to understand the molecular regulation of dendrite and spine development, epigenetic mechanisms have only recently been considered. In this review, we will focus on epigenetic mechanisms that regulate the development and maturation of dendrites and spines. We will discuss how epigenetic alterations could result in spine abnormalities that lead to MR, such as is seen in fragile X and Rett syndromes. We will also discuss both general methodology and recent technological advances in the study of neuronal dendrites and spines.  相似文献   
993.
The recovery of Lactobacillus bulgaricus was studied in correlation to the kinetics of cell drying. When bacteria were dehydrated at 30 °C, either in the presence or the absence of sucrose, the drying kinetics corresponds to a Fickean diffusion in correspondence with a short lag time. In contrast, when the bacteria were dehydrated at 70 °C in the absence of sugar, the kinetics corresponds to an anomalous diffusion, and the lag time is four to five times higher than that at 30 °C. However, when drying at 70 °C was carried out in the presence of sucrose, drying kinetics turned into a Fickean process parallel to a substantial decrease in the lag time. The pattern of water desorption was correlated with the critical water activity. When the drying kinetics corresponds to a Fickean diffusion, the lag time started to increase at 0.7 water activity, but when the cells were dried at 70 °C, the damage started at 0.5 water activity. This observation indicates that the drying rate affects the pattern of water desorption, and it can change the value of critical water activity. These results put into relevance that the cell recovery is due to the drying history and that the recovery increase produced by sucrose can be related to the maintenance of kinetic barriers for water desorption.  相似文献   
994.
Improved and efficient methods were developed for isolating high quality DNA and RNA from different sources of Iranian Yew (Taxus baccata L.). The methods were based on CTAB extraction buffer added with high levels of polyvinylpyrrolidone (PVP) and β-mercaptoethanol to properly remove polysaccharides and prevent oxidation of phenolics. The pellets obtained by ethanol precipitation were washed only with Chloroform: isoamyl alcohol (24:1). So, we could successfully eliminate the dangerous phenol/chloroform extraction steps from the isolation procedure. Both spectrophotometric (A260/A280 and A260/A230 ratios) and agarose electrophoresis analysis of isolated nucleic acids (DNA and RNA) indicated good results. DNA with the average yield of 100–300 μg/g leaf and stem tissue and total RNA with an average yield of 20–30 μg/g cell culture and 80–100 μg/g leaf and stem tissue of Iranian yew could be obtained. Successful amplification of pam and pds by PCR and RT-PCR, showed the integrity of isolated DNA and RNA, respectively.  相似文献   
995.
Eastern mosquitofish (Gambusia holbrooki) were introduced into Australia in 1925 and released to control mosquitoes. Gambusia holbrooki rapidly became invasive in recipient environments and now threaten native fauna. In this study, we used five polymorphic microsatellite loci and sequence from two mitochondrial genes, cytochrome b and cytochrome oxidase I, to evaluate genetic variation, colonisation and movement patterns of introduced G. holbrooki in the greater Melbourne area, and to assist in identifying the feasibility of local eradication. Microsatellite variation was consistently low within populations and there was evidence of bottleneck events for several populations. Populations displayed significant structuring associated with river basins rather than geographic distance, suggesting that habitat connectivity is important for dispersal. However, a few populations within river basins were more closely related to populations in other river basins than within their own basin, most likely reflecting a role of human-assisted dispersal in population establishment. Mitochondrial sequencing revealed only a single haplotype and suggested all populations were founded by individuals from a common source. These genetic data help delineate boundaries for local management strategies.  相似文献   
996.
997.
High activity of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine synthesis, is typically present in rapidly proliferating normal and malignant cells. The mitotically inactive steroidogenic cells in rodent testis and ovaries, however, also display high ODC activity. The activity of ODC in these cells responds to luteinizing hormone, and inhibition of ODC reduces the production of steroid hormones. Polyamines and ODC also control proliferation of germ cells and spermiogenesis. The activity of ODC, especially in proliferating cells, is regulated by antizyme inhibitor (AZIN). This protein displaces ODC from a complex with its inhibitor, antizyme. We have previously identified and cloned a second AZIN, i.e. antizyme inhibitor 2 (AZIN2), which has the highest levels of expression in brain and in testis. In the present study, we have used immunohistochemistry and in situ hybridization to localize the expression of AZIN2 in human gonads. We found a robust expression of AZIN2 in steroidogenic cells: testicular Leydig cells and Leydig cell tumors, in ovarian luteinized cells lining corpus luteum cysts, and in hilus cells. The results suggest that AZIN2 is not primarily involved in regulating the proliferation of the germinal epithelium, indicating a different role for AZIN1 and AZIN2 in the regulation of ODC. The localization of AZIN2 implies possible involvement in the gonadal synthesis and/or release of steroid hormones.  相似文献   
998.
H2AX: functional roles and potential applications   总被引:1,自引:0,他引:1  
Upon DNA double-strand break (DSB) induction in mammals, the histone H2A variant, H2AX, becomes rapidly phosphorylated at serine 139. This modified form, termed γ-H2AX, is easily identified with antibodies and serves as a sensitive indicator of DNA DSB formation. This review focuses on the potential clinical applications of γ-H2AX detection in cancer and in response to other cellular stresses. In addition, the role of H2AX in homeostasis and disease will be discussed. Recent work indicates that γ-H2AX detection may become a powerful tool for monitoring genotoxic events associated with cancer development and tumor progression.  相似文献   
999.
Carbon and nitrogen stable isotope analyses have improved our understanding of food webs and movement patterns of aquatic organisms. These techniques have recently been applied to diet studies of elasmobranch fishes, but isotope turnover rates and isotope diet–tissue discrimination are still poorly understood for this group. We performed a diet switch experiment on captive sandbar sharks (Carcharhinus plumbeus) as a model shark species to determine tissue turnover rates for liver, whole blood, and white muscle. In a second experiment, we subjected captive coastal skates (Leucoraja spp.) to serial salinity reductions to measure possible impacts of tissue urea content on nitrogen stable isotope values. We extracted urea from spiny dogfish (Squalus acanthias) white muscle to test for effects on nitrogen stable isotopes. Isotope turnover was slow for shark tissues and similar to previously published estimates for stingrays and teleost fishes with low growth rates. Muscle isotope data would likely fail to capture seasonal migrations or diet switches in sharks, while liver and whole blood would more closely reflect shorter term movement or shifts in diet. Nitrogen stable isotope values of skate blood and skate and dogfish white muscle were not affected by tissue urea content, suggesting that available diet–tissue discrimination estimates for teleost fishes with similar physiologies would provide accurate estimates for elasmobranchs.  相似文献   
1000.
Are viruses alive? Until very recently, answering this question was often negative and viruses were not considered in discussions on the origin and definition of life. This situation is rapidly changing, following several discoveries that have modified our vision of viruses. It has been recognized that viruses have played (and still play) a major innovative role in the evolution of cellular organisms. New definitions of viruses have been proposed and their position in the universal tree of life is actively discussed. Viruses are no more confused with their virions, but can be viewed as complex living entities that transform the infected cell into a novel organism—the virus—producing virions. I suggest here to define life (an historical process) as the mode of existence of ribosome encoding organisms (cells) and capsid encoding organisms (viruses) and their ancestors. I propose to define an organism as an ensemble of integrated organs (molecular or cellular) producing individuals evolving through natural selection. The origin of life on our planet would correspond to the establishment of the first organism corresponding to this definition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号