首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   33篇
  247篇
  2020年   3篇
  2018年   7篇
  2017年   1篇
  2016年   4篇
  2015年   11篇
  2014年   9篇
  2013年   5篇
  2012年   11篇
  2011年   8篇
  2010年   10篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   6篇
  2005年   12篇
  2004年   9篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   7篇
  1999年   12篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   9篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1977年   7篇
  1976年   5篇
  1974年   1篇
  1973年   5篇
  1969年   1篇
  1967年   2篇
  1964年   1篇
  1954年   1篇
  1952年   1篇
  1941年   1篇
排序方式: 共有247条查询结果,搜索用时 0 毫秒
31.
Aberrant Notch signaling has recently emerged as a possible mechanism for the altered neurogenesis, cognitive impairment, and learning and memory deficits associated with Alzheimer disease (AD). Recently, targeting the endocannabinoid system in models of AD has emerged as a potential approach to slow the progression of the disease process. Although studies have identified neuroprotective roles for endocannabinoids, there is a paucity of information on modulation of the pro-survival Notch pathway by endocannabinoids. In this study the influence of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol, on the Notch-1 pathway and on its endogenous regulators were investigated in an in vitro model of AD. We report that AEA up-regulates Notch-1 signaling in cultured neurons. We also provide evidence that although Aβ1–42 increases expression of the endogenous inhibitor of Notch-1, numb (Nb), this can be prevented by AEA and 2-arachidonoylglycerol. Interestingly, AEA up-regulated Nct expression, a component of γ-secretase, and this was found to play a crucial role in the enhanced Notch-1 signaling mediated by AEA. The stimulatory effects of AEA on Notch-1 signaling persisted in the presence of Aβ1–42. AEA was found to induce a preferential processing of Notch-1 over amyloid precursor protein to generate Aβ1–40. Aging, a natural process of neurodegeneration, was associated with a reduction in Notch-1 signaling in rat cortex and hippocampus, and this was restored with chronic treatment with URB 597. In summary, AEA has the proclivity to enhance Notch-1 signaling in an in vitro model of AD, which may have relevance for restoring neurogenesis and cognition in AD.  相似文献   
32.
33.

Background  

Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of variable lengths. The BLM DNA helicase has been shown to localize to the ND10 (nuclear domain 10) or PML (promyelocytic leukemia) nuclear bodies, where it associates with TOPIIIα, and to the nucleolus.  相似文献   
34.
We previously reported that broad band UV radiation or narrow bands of UV (Hbw 3 nm) of wavelengths 250 to 320 nm cause a systemic suppression of contact hypersensitivity (CHS) in mice, observed when the contact sensitizer is applied to a nonirradiated site. To determine if this effect is associated with UV-induced alterations in epidermal Langerhans cell (LC) numbers and morphology, we performed the following study. LC were identified by ATPase staining of EDTA-separated epidermal sheets. Electron microscope studies confirmed that this method was a satisfactory indicator of the presence of LC; we found no evidence for LC which did not stain for ATPase in either irradiated or unirradiated epidermis. Mice were irradiated on the back with narrow band UV of peak wavelength 270, 290, or 320 nm. The irradiated skin was excised 24 hr later and was stained as described. The number of LC with ATPase staining dendrites and the number of nondendritic LC were enumerated. We found that UV radiation of 270 or 290 nm caused 1) an alteration in LC morphology (loss of dendrites) and 2) a decrease in the total number of epidermal LC. Both effects occurred in a dose-dependent fashion. Previously, these same wavelengths of narrow band UV, but at higher doses, had been shown to cause systemic suppression of CHS. In this study, the doses of 270 or 290 nm UV that resulted in the decreased LC numbers and alterations in LC morphology described above were insufficient to cause systemic suppression of CHS. The converse was found if the irradiating waveband of UV had a peak at 320 nm. A dose of 320 nm UV that caused 50% systemic suppression of CHS had no effect on either the number or the morphology of LC at the site of irradiation. In addition, the number and morphology of LC were unaffected in the ventral epidermis (site of contact sensitization) of mice that had been previously irradiated on the back with a systemically suppressive dose of UV. We conclude: (a) UV-induced alterations in the number and morphology of LC at the site of irradiation are not necessary for the generation of systemic suppression of CHS by UV radiation; this indicates that the initial UV-absorbing event triggering systemic suppression is neither a loss of, nor morphologic alterations to, LC at the irradiation site. (b) A systemic effect of UV radiation on the number and morphology of LC at the unirradiated site of contact sensitization does not occur, and thus is not responsible for the UV-induced systemic suppression of CHS by UV radiation.  相似文献   
35.
5'-Polyphosphates of N2-(p-n-butylphenyl)-2'-deoxyguanosine and -guanosine which contain a difluoromethylene group in place of a phosphoanhydride oxygen have been synthesized. 5'-[beta,gamma-(Difluoromethylene)triphosphates], including that of 2'-deoxyguanosine, were prepared by reaction of the corresponding 5'-phosphates, activated by 1,1'-carbonyldiimidazole, with difluoromethanediphosphonate. The 5'-[(difluoromethylene)diphosphate] of N2-(p-n-butylphenyl)guanosine was prepared by treatment of a protected 5'-tosyl nucleoside with difluoromethanediphosphonate, followed by deprotection. Condensation of this nucleotide, activated with 1,1'-carbonyldiimidazole, with orthophosphate gave N2-(p-n-butylphenyl)guanosine 5'-[(alpha,beta-difluoromethylene)triphosphate]. Products were characterized by 31P and 19F NMR spectroscopy. The phosphonates were tested for their ability to displace [3H]GDP from the GTP binding proteins cellular (EC) and oncogenic (Leu-61) Ha-ras p21, and for their ability to inhibit DNA polymerase alpha from Chinese hamster ovary cells. The p21s bound weakly to a triphosphonate when the CF2 group was in the beta,gamma position, but not when it was in the alpha,beta position, and they did not bind to the corresponding (difluoromethylene)diphosphate. In contrast, the CF2 group had no effect on inhibition of DNA polymerase alpha by N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-[(beta,gamma-difluoromethylene)triphospate]. 2'-Deoxyguanosine 5'-[(beta,gamma-difluoromethylene)triphosphate] was found to be a bona fide substrate for several DNA polymerases and had a lower apparent Km than dGTP with Bacillus subtilis DNA polymerase III.  相似文献   
36.
The diffusion coefficients for the exchange of potassium across the membrane of erythrocytes of humans, rats, and rabbits have been determined by the use of artificially radioactive potassium, both into and out of the erythrocytes both in vitro and in vivo. The diffusion coefficients found in minutes–1 were 0.2 to 0.25 x 10–3 for human, 0.32 to 0.665 x 10–3 for rabbits, and 1.0 x 10–3 for rat erythrocytes. Rabbit erythrocytes appear to be more permeable in vivo. Reasons are advanced to explain the failure of earlier workers to demonstrate appreciable exchange of potassium in erythrocytes.  相似文献   
37.
38.
39.
Vertebrates are metagenomic organisms in that they are composed not only of their own genes but also those of their associated microbial cells. The majority of these associated microorganisms are found in the gastrointestinal tract (GIT) and presumably assist in processes such as energy and nutrient acquisition. Few studies have investigated the associated gut bacterial communities of non-mammalian vertebrates, and most rely on captive animals and/or fecal samples only. Here we investigate the gut bacterial community composition of a squamate reptile, the cottonmouth snake, Agkistrodon piscivorus through pyrosequencing of the bacterial 16S rRNA gene. We characterize the bacterial communities present in the small intestine, large intestine and cloaca. Many bacterial lineages present have been reported by other vertebrate gut community studies, but we also recovered unexpected bacteria that may be unique to squamate gut communities. Bacterial communities were not phylogenetically clustered according to GIT region, but there were statistically significant differences in community composition between regions. Additionally we demonstrate the utility of using cloacal swabs as a method for sampling snake gut bacterial communities.  相似文献   
40.
Actinomycin D (0.05 μg/ml) suppresses the synthesis of ribosomal RNA of baby hamster kidney (BHK21) cells. The production of infectious Pichinde virus was enhanced in the presence of actinomycin D, although the production of virus particles was not substantially different from cultures inoculated in the absence of the drug. By prelabeling BHK21 cells with 3H-uridine and then allowing the virus to replicate in the presence of actinomycin D, it was possible to show that ribosomal RNA synthesized prior to infection was incorporated into the virion. A single-hit kinetics of inactivation of Pichinde virus was observed with ultraviolet light, suggesting that the virus contains only a single copy of genome per virion. Comparison of the inactivation kinetics by gamma irradiation of Pichinde virus with Sindbis and rubella virus indicated that the radiosensitive genome of Pichinde virus was about 6 × 106 to 8 × 106 daltons. This value is greater than the 3.2 × 106 daltons which was estimated by biochemical analysis. One possible explanation considered is that the ribosomal RNA of host cell origin is functional and accounts for the differences in genome size estimated by the two methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号