首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   6篇
  66篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2000年   4篇
  1998年   2篇
  1996年   2篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有66条查询结果,搜索用时 0 毫秒
21.
It is often suggested that coffee causes dehydration and its consumption should be avoided or significantly reduced to maintain fluid balance. The aim of this study was to directly compare the effects of coffee consumption against water ingestion across a range of validated hydration assessment techniques. In a counterbalanced cross-over design, 50 male coffee drinkers (habitually consuming 3–6 cups per day) participated in two trials, each lasting three consecutive days. In addition to controlled physical activity, food and fluid intake, participants consumed either 4×200 mL of coffee containing 4 mg/kg caffeine (C) or water (W). Total body water (TBW) was calculated pre- and post-trial via ingestion of Deuterium Oxide. Urinary and haematological hydration markers were recorded daily in addition to nude body mass measurement (BM). Plasma was analysed for caffeine to confirm compliance. There were no significant changes in TBW from beginning to end of either trial and no differences between trials (51.5±1.4 vs. 51.4±1.3 kg, for C and W, respectively). No differences were observed between trials across any haematological markers or in 24 h urine volume (2409±660 vs. 2428±669 mL, for C and W, respectively), USG, osmolality or creatinine. Mean urinary Na+ excretion was higher in C than W (p = 0.02). No significant differences in BM were found between conditions, although a small progressive daily fall was observed within both trials (0.4±0.5 kg; p<0.05). Our data show that there were no significant differences across a wide range of haematological and urinary markers of hydration status between trials. These data suggest that coffee, when consumed in moderation by caffeine habituated males provides similar hydrating qualities to water.  相似文献   
22.
Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility including smooth muscle contraction, cell migration, cytokinesis, receptor capping, secretion, etc. Inhibition of MLCK activity in endothelial and epithelial monolayers using cell‐permeant peptide Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys (PIK, P eptide I nhibitor of K inase) allows protecting the barrier capacity, suggesting a potential medical use of PIK. However, low stability of L ‐PIK in a biological milieu prompts for development of more stable L ‐PIK analogues for use as experimental tools in basic and drug‐oriented biomedical research. Previously, we designed PIK1, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys‐NH2, that was 2.5‐fold more resistant to peptidases in human plasma in vitro than L ‐PIK and equal to it as MLCK inhibitor. In order to further enhance proteolytic stability of PIK inhibitor, we designed the set of six site‐protected peptides based on L ‐PIK and PIK1 degradation patterns in human plasma as revealed by 1H‐NMR analysis. Implemented modifications increased half‐live of the PIK‐related peptides in plasma about 10‐fold, and these compounds retained 25–100% of L ‐PIK inhibitory activity toward MLCK in vitro. Based on stability and functional activity ranking, PIK2, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐D ‐Arg‐Lys‐NH2, was identified as the most stable and effective L ‐PIK analogue. PIK2 was able to decrease myosin light chain phosphorylation in endothelial cells stimulated with thrombin, and this effect correlated with the inhibition by PIK2 of thrombin‐induced endothelial hyperpermeability in vitro. Therefore, PIK2 could be used as novel alternative to other cell‐permeant inhibitors of MLCK in cell culture‐based and in vivo studies where MLCK catalytic activity inhibition is required. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
23.
Synthesis of oxalic Acid by enzymes from lettuce leaves   总被引:3,自引:0,他引:3       下载免费PDF全文
A rapid purification of lactate dehydrogenase and glycolate oxidase from lettuce (Lactuca sativa) leaves is described. The kinetics of both enzymes are reported in relation to their possible roles in the production of oxalate. Lettuce lactate dehydrogenase behaves like mammalian dehydrogenase, catalyzing the dismutation of glyoxylate to glycolate and oxalate. A model is proposed in which glycolate oxidase in the peroxisomes and lactate dehydrogenase in the cytosol are involved in the production of oxalate. The effect of pH on the balance between oxalate and glycolate produced from glyoxylate suggests that in leaves lactate dehydrogenase may function as part of an oxalate-based biochemical, pH-stat.  相似文献   
24.
25.
The peripheral nerve contains both nonmyelinating and myelinating Schwann cells. The interactions between axons, surrounding myelin, and Schwann cells are thought to be important for the correct functioning of the nervous system. To get insight into the genes involved in human myelination and maintenance of the myelin sheath and nerve, we performed a serial analysis of gene expression of human sciatic nerve and cultured Schwann cells. In the sciatic nerve library, we found high expression of genes encoding proteins related to lipid metabolism, the complement system, and the cell cycle, while cultured Schwann cells showed mainly high expression of genes encoding extracellular matrix proteins. The results of our study will assist in the identification of genes involved in maintenance of myelin and peripheral nerve and of genes involved in inherited peripheral neuropathies.  相似文献   
26.
Chlorophyll (Chl) f is the most recently discovered chlorophyll and has only been found in cyanobacteria from wet environments. Although its structure and biophysical properties are resolved, the importance of Chl f as an accessory pigment in photosynthesis remains unresolved. We found Chl f in a cyanobacterium enriched from a cavernous environment and report the first example of Chl f-supported oxygenic photosynthesis in cyanobacteria from such habitats. Pigment extraction, hyperspectral microscopy and transmission electron microscopy demonstrated the presence of Chl a and f in unicellular cyanobacteria found in enrichment cultures. Amplicon sequencing indicated that all oxygenic phototrophs were related to KC1, a Chl f-containing cyanobacterium previously isolated from an aquatic environment. Microsensor measurements on aggregates demonstrated oxygenic photosynthesis at 742 nm and less efficient photosynthesis under 768- and 777-nm light probably because of diminished overlap with the absorption spectrum of Chl f and other far-red absorbing pigments. Our findings suggest the importance of Chl f-containing cyanobacteria in terrestrial habitats.The textbook concept that oxygenic phototrophs primarily use radiation in the visible range (400–700 nm) has been challenged by several findings of unique cyanobacteria and chlorophylls (Chl) over the past two decades (Miyashita et al., 1996; Chen et al., 2010; Croce and van Amerongen, 2014) Unicellular cyanobacteria in the genus Acaryochloris primarily employ Chl d for oxygenic photosynthesis at 700–720 nm (Miyashita et al., 1996) and thrive in shaded habitats with low levels of visible light but replete of near-infrared radiation (NIR, >700 nm, Kühl et al., 2005; Behrendt et al., 2011, 2012). Furthermore, Chl f was recently discovered in filamentous (Chen et al., 2010; Airs et al., 2014; Gan et al., 2014) and unicellular cyanobacteria (Miyashita et al., 2014), enabling light harvesting even further into the NIR region up to ∼740 nm, often aided by employing additional far-red light-absorbing pigments such as Chl d and phycobiliproteins (Gan et al., 2014). Whereas the biochemical structure (Willows et al., 2013) and biophysical properties (Li et al., 2013; Tomo et al., 2014) of Chl f have been studied in detail, the actual importance of this new chlorophyll for photosynthesis is hardly explored (Li et al., 2014).Chlorophyll f has been found in cyanobacteria originating from aquatic/wet environments: the filamentous Halomicronema hongdechloris from stromatolites in Australia (Chen et al., 2012), a unicellar morphotype (Strain KC1) from Lake Biwa in Japan (Akutsu et al., 2011; Miyashita et al., 2014) and a filamentous Leptolyngbya sp. strain (JSC-1, Gan et al., 2014) from a hot-spring and in a unicellular Chlorogloeopsis fritschii strain from rice paddies (Airs et al., 2014). In this study, we report on a unicellular Chl f-containing cyanobacterium originating from a wet cavernous habitat and demonstrate its capability of NIR-driven oxygenic photosynthesis. Enrichments of the new cyanobacterium were obtained from a dense dark green-blackish biofilm dominated by globular morphotypes of Nostocaceae growing on moist limestone outside Jenolan Caves, NSW, Australia. The sampling site was heavily shaded even during mid-day with low irradiance levels of 400- to 700-nm light varying from 0.5 to 5 μmol photons m−2 s−1. Biofilms were carefully scraped off the substratum and kept in shaded zip-lock bags in a moist atmosphere until further processing. Samples were then incubated at 28 °C in a f/2 medium under NIR at 720 nm (∼10 μmol photons m−2 s−1) yielding conspicuous green cell aggregates after several months of incubation. Repeated transfer of the aggregates into fresh medium resulted in a culture predominated by green cell clusters (Figure 1a), exhibiting orange-red fluorescence upon excitation with blue light (Figure 1b). Transmission electron microscopy revealed that the green clusters consisted of slightly elongated unicellular cyanobacteria (∼1- to 2-μm wide and ∼2- to 3-μm long), with stacked thylakoids and embedded in a joint polymer matrix (Figure 1c). Hyperspectral microscopy (Kühl and Polerecky, 2008) of the clusters revealed distinct troughs in the transmission spectra at absorption maxima indicative of Chl a (675–680 nm) and Chl f (∼720 nm; Figure 1d, red line). In situ spectral irradiance measurements at the sampling site showed strong depletion of visible wavelengths in the 480- to 710-nm range (Figure 1d, gray line), whereas highest light levels were found in the near-infrared region of the solar spectrum at 710–900 nm. The presence of Chl a and f was further confirmed in enrichment cultures using high-performance liquid chromatography-based pigment analysis (Figure 1e, Supplementary Figure S1), while no Chl d was detected. In addition, weak spectral signatures of carotenoids and phycobilins, with absorption occurring at ∼495 and 665 nm, were evident in the hyperspectral data. Cyanobacteria, including those producing Chl d/f, are known to actively remodel their pigment content in response to the available light spectrum (Stomp et al., 2007; Chen and Scheer, 2013; Gan et al., 2014) and Chl d/f has almost exclusively been found in cyanobacteria grown under far-red light and not under visible light (Kühl et al., 2005; Chen et al., 2010; Airs et al., 2014; Gan et al., 2014; Li et al., 2014; Miyashita et al., 2014). Recent work describes this acclimation response as ‘Far-Red Light photoacclimation'' (FaRLiP), which, in strain JSC-1, comprises a global change in gene expression and structural remodeling of the PSII/PSI core proteins and phycobilisome constituents (Gan et al., 2014). The extent to which this arrangement results in optimized photosynthetic performance is only known for the NIR (=710 nm)-acclimated strain JSC-1, where exposure to wavelengths >695 nm resulted in 40% higher O2 evolution rates as compared with cells that were previously adapted to red light (645 nm; Gan et al., 2014). Yet the discrimination of actinic wavelengths and their relative effect on gross photosynthesis in Chl f-containing cells needs further investigation. Using an O2 microsensor and the light–dark shift method (Revsbech et al., 1983) on embedded Chl f-containing aggregates, we found maximal gross photosynthesis rates (∼1.06 μmol O2 cm−3 s−1) to occur at irradiances of ∼250 μmol photons m−2 s−1 of 742 nm (half-bandwidth, HBW, 25 nm, Figures 2a and b) with light saturation to occur very early at ∼35 μmol photons m−2 s−1. Further red-shifted actinic light, that is, 768 nm (HBW 28 nm) and 777 nm (HBW 30 nm), yielded lower O2 evolution rates, which, in all likelihood, are an effect of the diminished overlap with far-red light-absorbing pigments, including Chl f (Figures 2a and b). As O2 evolution rates were measured on non-axenic cell aggregates, 16S rDNA amplicon sequencing was employed to determine the microbial diversity found within the enrichment culture. This revealed the presence of a variety of bacterial types, including anoxygenic phototrophs, yet all sequences for known oxygenic phototrophs in the data set (∼9.3% of all reads on the order level, Supplementary Figure S2) formed a single operational taxonomic unit (OTU) closely affiliated with the Chl f-containing strain KC1 (Miyashita et al., 2014, Figure 2c).Open in a separate windowFigure 1Imaging and pigment analysis of Chl f-containing cyanobacteria isolated from a cavernous low-light environment. (a) Representative bright field microscope image of cultured cells grown under 720 nm NIR. (b) Fluorescence image of the same cells as in a, excited at 450–490 nm, with emission being detected at >510 nm. (c) Transmission electron microscopy of a Chl f-containing cyanobacterium with densely stacked thylakoid membranes. (d) Transmittance spectrum of cell aggregate determined by hyperspectral imaging (red line). Ambient light conditions at the site of isolation (gray line), as measured by a spectroradiometer. Note the Chl f-specific in vivo absorption at ∼720 nm in the transmittance spectrum (dotted line). Small insert picture denotes the cells and area of interest (black arrow) from which the spectrum was taken. (e) In vitro absorption spectrum of Chl f extracted from enrichment cultures and analyzed via high-performance liquid chromatography. The two Chl f-specific absorption peaks (404 and 704 nm in acetone:MeOH solvent) are indicated.Open in a separate windowFigure 2Taxonomic affiliation and O2 evolution of Chl f-containing cells as determined by O2 microelectrode measurements and 16 S rDNA amplicon sequencing. (a) Emission spectra of narrow-band light-emitting diodes (LEDs) used in this study, with peak emissions at 742, 768 and 777 nm indicated by a–c, respectively. (b) Gross photosynthesis measured via an O2 microsensor placed in a clump of agarose-embedded Chl f-containing cells. Different NIR irradiance was administered by the LEDs in a and by altering the distance of the LEDs to the embedded cells. (c) Phylogenetic affiliation of known Chl f and/or Chl d-containing cyanobacteria (highlighted in gray) and their respective habitat/place of isolation. Taxonomy was determined by clustering all known oxygenic phototrophs found in enrichment cultures from this study (at order level) into a single OTU (=292 bp length, see Supplementary Materials for details). Phylogeny was inferred using Maximum-likelihood in conjunction with the GTR +I +G nucleotide substitution model, tree stability was tested using bootstrapping with 100 replicates. The analysis involved 39 nucleotide sequences each truncated to a length of 292 bp. Here, the green-sulphur bacterium Chlorobium tepidum TLS was chosen as the outgroup.This advocates that cells from our enrichment culture are related to KC1 cells and supports, in conjunction with further morphological-, physiological- and ultrastructural evidence, that Chl f is extending the usable light spectrum for oxygenic photosynthesis in a cavernous low-light environment. Given the lifestyle and known habitats of recognized Chl d/f-producing cyanobacteria (Figure 2c), we propose that many, if not all, surface-associated cyanobacteria are intrinsically capable of producing far-red light-absorbing pigments and to actively employ them in oxygenic photosynthesis as a result of FaRLiP or similar, yet unknown, mechanisms.  相似文献   
27.
Two gamma- and UV-radiation resistant, Gram-positive, red- or pink-pigmented, rod-shaped, strictly aerobic, oxidase- and catalase-positive bacterial strains, TDMA-25T and TDMA-uv51T, were isolated from fresh water collected at Misasa, a radioactive site in Japan. Phylogenetic analysis based on 16S rRNA gene sequences placed both in a distinct lineage in the family Deinococcaceae, and the highest degrees of sequence similarity determined belonged to Deinococcus maricopensis LB-34T (88.8–89.3%), Deinococcus pimensis KR-235T (86.4–86.7%) and Deinococcus yavapaiensis KR-236T (86.1%). The DNA G+C content of the strains was 53–58 mol%. The major respiratory quinone was MK-8. The predominant fatty acids were C15:0 iso, C16:0 iso, C13:0 iso, C17:0 iso, C16:0, C13:0 anteiso, C15:0 and C12:0 iso. The strains degraded gelatin, casein, starch and Tween 80. Unique physiological characteristics, differences in their fatty acid profiles, and genotypic and phylogenetic features, differentiated strains TDMA-25T and TDMA-uv51T from closely related Deinococcus species. Hence, the two strains are described as novel species of the genus Deinococcus. The names Deinococcus misasensis sp. nov. (type strain TDMA-25T=JCM 14369=NBRC 102116=CCUG 53610) and Deinococcus roseus sp. nov. (type strain TDMA-uv51T=JCM 14370=NBRC 102117=CCUG 53611) are proposed.  相似文献   
28.
An important element in the measurement of energy budgets of free-living animals is the estimation of energy costs during locomotion. Using humans as a particularly tractable model species, we conducted treadmill experiments to test the validity of tri-axial accelerometry loggers, designed for use with animals in the field, to estimate rate of oxygen consumption (VO2: an indirect measure of metabolic rate) and speed during locomotion. The predictive power of overall dynamic body acceleration (ODBA) obtained from loggers attached to different parts of the body was compared to that of heart rate (fH). When subject identity was included in the statistical analysis, ODBA was a good, though slightly poorer, predictor of VO2 and speed during locomotion on the flat (mean of two-part regressions: R2=0.91 and 0.91, from a logger placed on the neck) and VO2 during gradient walking (single regression: R2=0.77 from a logger placed on the upper back) than was fH (R2=0.96, 0.94, 0.86, respectively). For locomotion on the flat, ODBA was still a good predictor when subject identity was replaced by subject mass and height (morphometrics typically obtainable from animals in the field; R2=0.92 and 0.89) and a slightly better overall predictor than fH (R2=0.92 and 0.85). For gradient walking, ODBA predicted VO2 more accurately than before (R2=0.83) and considerably better than did fH (R2=0.77). ODBA and fH combined were the most powerful predictor of VO2 and speed during locomotion. However, ODBA alone appears to be a good predictor and suitable for use in the field in particular, given that accelerometry traces also provide information on the timing, frequency and duration of locomotion events, and also the gait being used.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号