首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   71篇
  2023年   15篇
  2022年   18篇
  2021年   33篇
  2020年   16篇
  2019年   16篇
  2018年   22篇
  2017年   26篇
  2016年   21篇
  2015年   52篇
  2014年   56篇
  2013年   46篇
  2012年   73篇
  2011年   75篇
  2010年   45篇
  2009年   25篇
  2008年   31篇
  2007年   37篇
  2006年   36篇
  2005年   31篇
  2004年   21篇
  2003年   31篇
  2002年   25篇
  2001年   25篇
  2000年   20篇
  1999年   13篇
  1998年   11篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   8篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1960年   2篇
排序方式: 共有913条查询结果,搜索用时 390 毫秒
151.
Salmonella enterica serovars Typhi and Paratyphi A cause systemic infections in humans which are referred to as enteric fever. Multidrug-resistant (MDR) serovar Typhi isolates emerged in the 1980s, and in recent years MDR serovar Paratyphi A infections have become established as a significant problem across Asia. MDR in serovar Typhi is almost invariably associated with IncHI1 plasmids, but the genetic basis of MDR in serovar Paratyphi A has remained predominantly undefined. The DNA sequence of an IncHI1 plasmid, pAKU_1, encoding MDR in a serovar Paratyphi A strain has been determined. Significantly, this plasmid shares a common IncHI1-associated DNA backbone with the serovar Typhi plasmid pHCM1 and an S. enterica serovar Typhimurium plasmid pR27. Plasmids pAKU_1 and pHCM1 share 14 antibiotic resistance genes encoded within similar mobile elements, which appear to form a 24-kb composite transposon that has transferred as a single unit into different positions into their IncHI1 backbones. Thus, these plasmids have acquired similar antibiotic resistance genes independently via the horizontal transfer of mobile DNA elements. Furthermore, two IncHI1 plasmids from a Vietnamese isolate of serovar Typhi were found to contain features of the backbone sequence of pAKU_1 rather than pHCM1, with the composite transposon inserted in the same location as in the pAKU_1 sequence. Our data show that these serovar Typhi and Paratyphi A IncHI1 plasmids share highly conserved core DNA and have acquired similar mobile elements encoding antibiotic resistance genes in past decades.  相似文献   
152.
153.
通过野外调查和标本研究,报道越南、老挝两地凤尾蕨属Pteris 7个新记载的物种,它们分别是P.argyraea、四川凤尾蕨P.sichuanensis、两广凤尾蕨P.maclurei、 单叶凤尾蕨P.pseudopellucida、 有刺凤尾蕨P.setuloso-costulata、 琼南凤尾蕨P.morii、 栗轴凤尾蕨P.wangiana.  相似文献   
154.
RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5′ leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae–RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein–protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.  相似文献   
155.
156.
The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.  相似文献   
157.
158.
Plant and Soil - Soil microorganisms play an important role in biogeochemical cycles in terrestrial ecosystems. Increasing nitrogen (N) and phosphorus (P) deposition are likely to regulate...  相似文献   
159.
The elongation factor 2 (EF-2) genes of the yeast Saccharomyces cerevisiae have been cloned and characterized with the ultimate goal of gaining a better understanding of the mechanism and control of protein synthesis. Two genes (EFT1 and EFT2) were isolated by screening a bacteriophage lambda yeast genomic DNA library with an oligonucleotide probe complementary to the domain of EF-2 that contains diphthamide, the unique posttranslationally modified histidine that is specifically ADP-ribosylated by diphtheria toxin. Although EFT1 and EFT2 are located on separate chromosomes, the DNA sequences of the two genes differ at only four positions out of 2526 base pairs, and the predicted protein sequences are identical. Genetic deletion of each gene revealed that at least one functional copy of either EFT gene is required for cell viability. Messenger RNA levels of yeast EF-2 parallel cellular growth and peak in mid-log phase cultures. The EF-2 protein sequence is strikingly conserved through evolution. Yeast EF-2 is 66% identical to, and shares over 85% homology with, human EF-2. In addition, yeast and mammalian EF-2 share identical sequences at two critical functional sites: (i) the domain containing the histidine residue that is modified to diphthamide and (ii) the threonine residue that is specifically phosphorylated in vivo in mammalian cells by calmodulin-dependent protein kinase III, also known as EF-2 kinase. Furthermore, yeast EF-2 also contains the Glu-X-X-Arg-X-Ile-Thr-Ile "effector" sequence motif that is conserved among all known elongation factors, and its GTP-binding domain exhibits strong homology to the G-domain of Escherichia coli elongation factor Tu (EF-Tu) and other G-protein family members. Based upon these observations, we have modeled the G-domain of the deduced EF-2 protein sequence to the solved crystallographic structure for EF-Tu.  相似文献   
160.
Recent studies suggest that transforming growth factor-beta (TGF-beta) production is up-regulated at sites of tissue injury, inflammation and repair, or fibrosis. Endothelial cells represent a potentially important in vivo source of TGF-beta; however, the identity of endogenous modulators of TGF-beta production by these cells remains unclear. To address this issue, the effects of the cytokines, IL-1 beta, and TNF-alpha on TGF-beta production by rat pulmonary artery endothelial cells were examined. Conditioned media from cells treated with 0 to 20 ng/ml IL-1 beta and/or TNF-alpha were assayed for TGF-beta activity using a mink lung epithelial cell line. The results show that rat pulmonary artery endothelial cells secreted undetectable amounts of active TGF-beta in the absence of cytokines. However, upon acidification of the conditioned media before assay, a time-dependent increase in TGF-beta activity was noted in media from both untreated and cytokine-treated cells. However, both IL-1 beta and TNF-alpha treatment caused the secretion of significantly greater amounts of TGF-beta activity than control cells, in a dose-dependent manner, with maximal response obtained at cytokine doses of greater than 10 ng/ml. At equivalent doses of cytokine tested, the magnitude of the response was significantly greater with IL-1 beta. These responses were paralleled by increases in steady state mRNA levels for TGF-beta 1. Addition of both cytokines resulted in a synergistic response. Synergism with IL-1 beta was also noted with the fibrogenic agent bleomycin. Kinetic studies indicated that a minimum of 4 h of treatment with either IL-1 beta or TNF-alpha was required for detection of significant increases in either secreted TGF-beta activity or steady state TGF-beta 1 mRNA levels. Thus, endothelial cells could play a role in various TGF-beta-dependent processes in vivo, in situations wherein IL-1 beta and/or TNF-alpha may be present at comparable concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号