首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2736篇
  免费   144篇
  国内免费   2篇
  2882篇
  2022年   14篇
  2021年   28篇
  2020年   24篇
  2019年   22篇
  2018年   30篇
  2017年   26篇
  2016年   43篇
  2015年   87篇
  2014年   80篇
  2013年   219篇
  2012年   166篇
  2011年   158篇
  2010年   97篇
  2009年   88篇
  2008年   141篇
  2007年   151篇
  2006年   131篇
  2005年   122篇
  2004年   133篇
  2003年   140篇
  2002年   116篇
  2001年   62篇
  2000年   80篇
  1999年   67篇
  1998年   27篇
  1997年   20篇
  1996年   23篇
  1995年   22篇
  1994年   14篇
  1993年   18篇
  1992年   46篇
  1991年   43篇
  1990年   42篇
  1989年   52篇
  1988年   38篇
  1987年   44篇
  1986年   24篇
  1985年   30篇
  1984年   13篇
  1983年   14篇
  1982年   20篇
  1981年   10篇
  1979年   22篇
  1978年   15篇
  1977年   18篇
  1976年   16篇
  1975年   14篇
  1974年   9篇
  1971年   9篇
  1969年   8篇
排序方式: 共有2882条查询结果,搜索用时 9 毫秒
101.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs) that share approximately 70% amino acid sequence identity. BAS catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce a diketide benzalacetone, whereas CHS performs sequential condensations with three malonyl-CoA to generate a tetraketide chalcone. A homology model suggested that BAS has the same overall fold as CHS with cavity volume almost as large as that of CHS. One of the most characteristic features is that Rheum palmatum BAS lacks active site Phe-215; the residues 214LF conserved in type III PKSs are uniquely replaced by IL. Our observation that the BAS I214L/L215F mutant exhibited chalcone-forming activity in a pH-dependent manner supported a hypothesis that the absence of Phe-215 in BAS accounts for the interruption of the polyketide chain elongation at the diketide stage. On the other hand, Phe-215 mutants of Scutellaria baicalensis CHS (L214I/F215L, F215W, F215Y, F215S, F215A, F215H, and F215C) afforded increased levels of truncated products; however, none of them generated benzalacetone. These results confirmed the critical role of Phe-215 in the polyketide formation reactions and provided structural basis for understanding the structure-function relationship of the plant type III PKSs.  相似文献   
102.
103.
104.
Similarly to Helicobacter pylori but unlike Vibrio cholerae O1/O139, Campylobacter jejuni is non‐motile at 20°C but highly motile at ≥37°C. The bacterium C. jejuni has one of the highest swimming speeds reported (>100 μm/s), especially at 42°C. Straight and spiral bacterial shapes share the same motility. C. jejuni has a unique structure in the flagellate polar region, which is characterized by a cup‐like structure (beneath the inner membrane), a funnel shape (opening onto the polar surface) and less dense space (cytoplasm). Other Campylobacter species (coli, fetus, and lari) have similar motility and flagellate polar structures, albeit with slight differences. This is especially true for Campylobacter fetus, which has a flagellum only at one pole and a cup‐like structure composed of two membranes.  相似文献   
105.
Involvement of the endocannabinoid system in periodontal healing   总被引:1,自引:0,他引:1  
Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.  相似文献   
106.
From the heartwood of Dalbergia parviflora, five compounds, dalparvin A (1), B (2), C (3), dalparvinol C (4), and neokhriol A (5), along with 11 known compounds, kenusanone G (6), cajanin (7), sophorol (8), alpinetin (9), hesperetin (10), 3'-O-methylorobol, odoratin, (2R)(3R)-2,3-trans 7-hydroxy-5-methoxydihydroflavonol, (6aR, 11aR)-3,8-dihydroxy-9-methoxypterocarpan, (6aR, 11aR)- vesticarpan, and methyl-3,4-dihydroxy-2-methoxybenzoate were isolated and characterized. Isolates were evaluated for their cell proliferation stimulatory activity against MCF-7, T-47D, and BT20 human breast cancer cell lines. Along with 7-10, two compounds 2 and 3 stimulated not only MCF-7, but also T-47D human breast cancer cell proliferation. Compound 6 had activity only against MCF-7 cells, and the activity of 7 was more than equivalent to that of daidzein. On the other hand, none of the isolates had any significant effects on BT20 cell proliferation, and these results indicated that the stimulative activity of these compounds was not general to any cell proliferations. Furthermore, these compounds were tested in the estrogen-responsive transient luciferase reporter assay.  相似文献   
107.
Mature leaves of shade species exhibit lower respiratory rates than those of sun species. To elucidate the mechanism underlying different respiratory rates between sun and shade species, we examined respiratory properties of leaves in Spinacia oleracea L., a sun species, and Alocasia odora (Lodd.) Spach, a shade species, with special reference to changes in the respiratory rate throughout the night. In S. oleracea , rates of both CO2 efflux and O2 uptake decreased with time during the night, whereas in A. odora both rates were virtually constant at lower levels. The rates of O2 uptake in S . oleracea increased upon addition of sucrose, and the rates attained were virtually identical throughout the night. However, the addition of an uncoupler [carbonyl cyanide p -(trifluoromethoxy)-phenylhydrazone; FCCP] did not alter the rates. In contrast, the rates of O2 uptake in A. odora were enhanced by the addition of FCCP, but not by sucrose. The concentrations of carbohydrates in the tissue decreased throughout the night in both species and the ATP/ADP ratio was always greater in A. odora. These results indicate that, in S. oleracea , the availability of respiratory substrate determines the respiratory rate, while the low respiratory rate in A. odora is ascribed to its low demand for ATP.  相似文献   
108.
Ultraviolet (UV) irradiation stimulates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) superfamily and implicated in stress-induced apoptosis. UV also induces the activation of another MAPK member, extracellular signal-regulated kinase (ERK), which is typically involved in a growth-signaling cascade. However, the UV-induced signaling pathway leading to ERK activation, together with the physiological role, has remained unknown. Here we examined the molecular mechanism and physiological function of UV-induced ERK activation in human epidermoid carcinoma A431 cells that retain a high number of epidermal growth factor (EGF) receptors. UV-induced ERK activation was accompanied with the Tyr phosphorylation of EGF receptors, and both responses were completely abolished in the presence of a selective EGF receptor inhibitor (AG1478) or the Src inhibitor PP2 and by the expression of a kinase-dead Src mutant. On the other hand, SAPK/JNK activation by UV was partially inhibited by these inhibitors. UV stimulated Src activity in a manner similar to the ERK activation, but the Src activation was insensitive to AG1478. UV-induced cell apoptosis measured by DNA fragmentation and caspase 3 activation was enhanced by AG1478 and an ERK kinase inhibitor (U0126) but inhibited by EGF receptor stimulation by the agonist. These results indicate that UV-induced ERK activation, which provides a survival signal against stress-induced apoptosis, is mediated through Src-dependent Tyr phosphorylation of EGF receptors.  相似文献   
109.
Molecular interactions of the three plastoquinone electron acceptors, QA, QB, and QC, in photosystem II (PSII) were studied by fragment molecular orbital (FMO) calculations. Calculations at the FMO-MP2/6-31G level using PSII models deduced from the X-ray structure of the PSII complexes from Thermosynechococcus elongatus provided the binding energies of QA, QB, and QC as ?56.1, ?37.9, and ?30.1 kcal/mol, respectively. The interaction energies with surrounding fragments showed that the contributions of lipids and cofactors were 0, 24 and 45 % of the total interaction energies for QA, QB, and QC, respectively. These results are consistent with the fact that QA is strongly bound to the PSII protein, whereas QB functions as a substrate and is exchangeable with other quinones and herbicides, and the presence of QC is highly dependent on PSII preparations. It was further shown that the isoprenoid tail is more responsible for the binding than the head group in all the three quinones, and that dispersion forces rather than electrostatic interactions mainly contribute to the stabilization. The relevance of the stability and molecular interactions of QA, QB, and QC to their physiological functions is discussed.  相似文献   
110.
Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases. This remodeling cycle contributes to the generation of membrane glycerophospholipid diversity and the production of lipid mediators such as fatty acid derivatives and lysophospholipids. Furthermore, specific glycerophospholipid transporters are also important to organize a unique glycerophospholipid composition in each organelle. Recent progress in this field contributes to understanding how and why membrane glycerophospholipid diversity is organized and maintained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号