首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1241篇
  免费   78篇
  1319篇
  2023年   8篇
  2022年   19篇
  2021年   22篇
  2020年   25篇
  2019年   24篇
  2018年   24篇
  2017年   25篇
  2016年   39篇
  2015年   54篇
  2014年   69篇
  2013年   84篇
  2012年   112篇
  2011年   113篇
  2010年   82篇
  2009年   53篇
  2008年   81篇
  2007年   68篇
  2006年   70篇
  2005年   71篇
  2004年   54篇
  2003年   45篇
  2002年   53篇
  2001年   16篇
  2000年   7篇
  1999年   11篇
  1998年   9篇
  1997年   9篇
  1996年   4篇
  1995年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1976年   2篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
  1969年   6篇
  1965年   1篇
  1960年   2篇
  1959年   2篇
  1958年   1篇
  1956年   1篇
排序方式: 共有1319条查询结果,搜索用时 0 毫秒
91.
The kinetic behaviour of insect acetylcholinesterases deviates from the Michaelis-Menten pattern. These deviations are known as activation or inhibition at various substrate concentrations and can be more or less observable depending on mutations around the active site of the enzyme. Most kinetic studies on these enzymes still rely on initial rate measurements. It is demonstrated here that according to this method one of the deviations can be overlooked. We attempt to point out that in such cases a detailed step-by-step progress curves analysis is successful. The study is focused on two different methods of analysing progress curves: (i) the first one is based on an integrated initial rate equation which can sufficiently fit truncated progress curves under corresponding conditions; and (ii) the other one precludes the algebraic formulae, but uses numerical integration for searching a non analytical solution of ordinary differential equations describing a kinetic model. All methods are tested on three different acetylcholinesterase mutants from Drosophila melanogaster. The results indicate that kinetic parameters for the E107K mutant with highly expressive activation and inhibition can be well evaluated applying any analysis method. It is quite different for E107W and E107Y mutants where latent activation is present, but discovered only using one or the other progress curves analysis methods.  相似文献   
92.
Two pot experiments were conducted to examine three-level interactions between host plants, mycorrhizal fungi and parasitic plants. In a greenhouse experiment, Poa annua plants were grown in the presence or absence of an AM fungus (either Glomus lamellosum V43a or G. mosseae BEG29) and in the presence or absence of a root hemiparasitic plant (Odontites vulgaris). In a laboratory experiment, mycorrhizal infection (Glomus claroideum BEG31) of Trifolium pratense host plants (mycorrhizal versus non-mycorrhizal) was combined with hemiparasite infection (Rhinanthus serotinus) of the host (parasitized versus non-parasitized). Infection with the two species of Glomus had no significant effect on the growth of P. annua, while hemiparasite infection caused a significant reduction in host biomass. Mycorrhizal status of P. annua hosts (i.e. presence/absence of AM fungus) affected neither the biomass nor the number of flowers produced by the attached O. vulgaris plants. Infection with G. claroideum BEG31 greatly increased the biomass of T. pratense, but hemiparasite infection had no effect. The hemiparasitic R. serotinus plants attached to mycorrhizal hosts had higher biomass and produced more flowers than plants growing with non-mycorrhizal hosts. Roots of T. pratense were colonized by the AM fungus to an extent independent of the presence or absence of the hemiparasite. Our results confirm earlier findings that the mycorrhizal status of a host plant can affect the performance of an attached root hemiparasite. However, improvement of the performance of the parasitic plant following attachment to a mycorrhizal host depends on the extent to which the AM fungi is able to enhance the growth of the host. Accepted: 23 February 2001  相似文献   
93.

Background

Vitamin D may play a protective role in many diseases. Public health messages are advocating sun avoidance to reduce skin cancer risk but the potential deleterious effects of these recommendations for vitamin D metabolism have been poorly investigated.

Methodology/Principal Findings

We investigated the association between 25-hydroxy-vitamin D (25(OH)D), skin type and ultraviolet exposure in 1414 Caucasian females in the UK. Mean age of the cohort was 47 years (18–79) and mean 25(OH)D levels were 77 nmol/L (6–289). 25(OH)D levels were strongly associated with season of sampling with higher levels in the spring and summer months (p<0.0001). Light skin types (skin type 1 and 2) have lower levels of 25(OH)D (mean 71 nmol/L) compared to darker skin types (skin type 3 and 4) (mean 82 nmol/L) after adjusting for multiple confounders (p<0.0001). The trend for increasing risk of low vitamin D with fairer skin types was highly significant despite adjustment for all confounders (p = 0.001).

Conclusions/Significance

Contrary to previous studies across different ethnic backgrounds, this study within Caucasian UK females shows that fair skin types have lower levels of 25(OH)D compared to darker skin types with potential detrimental health effects. Public health campaigns advocating sun avoidance in fair skinned individuals may need to be revised in view of their risk of vitamin D deficiency.  相似文献   
94.
The Tn5 transposase is an example of a class of proteins that move DNA sequences (transposons) via a process called transposition. DNA transposition is a widespread genetic mobility mechanism that has profoundly affected the genomes of nearly all organisms. We have used single-DNA micromanipulation experiments to study the process by which Tn5 DNA transposons are identified and processed by their transposase protein. We have determined that the energy barrier to disassemble catalytically active synaptic complexes is 16 kcal mol(-1). However, we have found that the looping organization of DNA segments by transposase is less sequence-driven than previously thought. Loops anchored at some non-transposon end sequences display a disassembly energy barrier of 14 kcal mol(-1), nearly as stable as the synapses formed at known transposon end sequences. However, these non-transposon end sequence independent complexes do not mediate DNA cleavage. Therefore, the sequence-sensitivity for DNA binding and looping by Tn5 transposase is significantly less than that required for DNA cleavage. These results have implications for the in vivo down regulation of transposition and the cis-transposition bias of transposase.  相似文献   
95.
Mur ligases play an essential role in the intracellular biosynthesis of bacterial peptidoglycan, the main component of the bacterial cell wall, and represent attractive targets for the design of novel antibacterials. UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) catalyses the addition of D-glutamic acid to the cytoplasmic intermediate UDP-N-acetylmuramoyl-L-alanine (UMA) and is the second in the series of Mur ligases. MurD ligase is highly stereospecific for its substrate, D-glutamic acid (D-Glu). Here, we report the high resolution crystal structures of MurD in complexes with two novel inhibitors designed to mimic the transition state of the reaction, which contain either the D-Glu or the L-Glu moiety. The binding modes of N-sulfonyl-D-Glu and N-sulfonyl-L-Glu derivatives were also characterised kinetically. The results of this study represent an excellent starting point for further development of novel inhibitors of this enzyme.  相似文献   
96.
In an age of comparative microbial genomics, knowledge of the near-native architecture of microorganisms is essential for achieving an integrative understanding of physiology and function. We characterized and compared the three-dimensional architecture of the ecologically important cyanobacterium Prochlorococcus in a near-native state using cryo-electron tomography and found that closely related strains have diverged substantially in cellular organization and structure. By visualizing native, hydrated structures within cells, we discovered that the MED4 strain, which possesses one of the smallest genomes (1.66 Mbp) of any known photosynthetic organism, has evolved a comparatively streamlined cellular architecture. This strain possesses a smaller cell volume, an attenuated cell wall, and less extensive intracytoplasmic (photosynthetic) membrane system compared to the more deeply branched MIT9313 strain. Comparative genomic analyses indicate that differences have evolved in key structural genes, including those encoding enzymes involved in cell wall peptidoglycan biosynthesis. Although both strains possess carboxysomes that are polygonal and cluster in the central cytoplasm, the carboxysomes of MED4 are smaller. A streamlined cellular structure could be advantageous to microorganisms thriving in the low-nutrient conditions characteristic of large regions of the open ocean and thus have consequences for ecological niche differentiation. Through cryo-electron tomography we visualized, for the first time, the three-dimensional structure of the extensive network of photosynthetic lamellae within Prochlorococcus and the potential pathways for intracellular and intermembrane movement of molecules. Comparative information on the near-native structure of microorganisms is an important and necessary component of exploring microbial diversity and understanding its consequences for function and ecology.  相似文献   
97.
Three dibenzotetraaza[14]annulenes non-covalently interacted with double-stranded DNA and RNA by mixed minor groove and/or intercalative binding mode. Observed interactions were strongly dependent on the steric exposure of positive charges and the length of the linkers of studied compounds as well as on the secondary structure and basepair composition of DNA/RNA. Compound 2 showed pronounced selectivity toward dA-dT-rich sequences and binding mode switch from dominant minor groove binding to ds-DNA to dominant intercalation into ds-RNA. Antiproliferative effect of studied compounds on human tumor and normal cell lines was in good agreement with the strength of observed interactions with DNA/RNA.  相似文献   
98.
99.
Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5′-to-3′ polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors.  相似文献   
100.
The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号