The transport of macromolecules between the nucleus and cytoplasm of eukaryotic cells is largely mediated by a single family of transport factors, the karyopherin or importin beta-like family. Structural and biochemical evidence suggests conformational flexibility of these modular HEAT-repeat proteins is crucial for their regulation. Here we use small angle x-ray scattering to assess the extent of conformational variation within a set of nuclear import and export factors. The study reveals that importin beta, transportin, and the exportin Xpo-t share a similar S-like superhelical conformation in their unbound state. There are no obvious differences in the overall structures that might generally distinguish nuclear export from nuclear import mediators. Two other members of the family, the exportins Cse1 and Xpo1, possess a significantly more globular conformation, indicating that the extended S-like architecture is not a hallmark of all karyopherins. Binding of RanGTP/cargo to importin beta, transportin, and Xpo-t triggers distinct conformational responses, suggesting that even closely related karyopherins employ different mechanisms of conformational regulation and that cargo and nuclear pore-interacting surfaces of the different receptors may be unique. 相似文献
We review our methodology for producing physically accurate potential energy functions, particularly relevant in the context of Lifson's goal of including frequency agreement as one of the criteria of a self-consistent force field. Our spectroscopically determined force field (SDFF) procedure guarantees such agreement by imposing it as an initial constraint on parameter optimization, and accomplishes this by an analytical transformation of ab initio "data" into the energy function format. After describing the elements of the SDFF protocol, we indicate its implementation to date and then discuss recent advances in our representation of the force field, in particular those required to produce an SDFF for the peptide group. 相似文献
Src homology protein 1 (SHP-1) plays an important role in B cell Ag receptor (BCR) differentiation, proliferation, survival, and apoptosis. After BCR stimulation in apoptotic cells, SHP-1 has been shown to be recruited to phosphorylated immunoreceptor tyrosine-based inhibitory motifs present in receptors such as CD22 and CD72. However, the substrates of SHP-1 in the chicken B cell line, DT40, have remained undefined. To identify SHP-1 substrates in DT40, we used a trapping mutant, SHP-1 C/S (a catalytically inactive form). Cross-linking of BCR induced hyperphosphorylation of approximately 44-kDa protein in C/S transfectants. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis revealed that this was actin (cytoplasmic type 5) carrying three immunoreceptor tyrosine-based inhibitory motif-like sequences. SHP-1 was shown to bind to one of these sequences in synthetic peptide binding experiment. Thus, actin is a direct SHP-1 substrate. Furthermore, more SHP-1 molecules translocate into lipid rafts, and their association with actin was increased after BCR stimulation. In C/S transfectants, actin polymerization induced by membrane IgM ligation was sustained to a greater extent for a longer time compared with wild-type transfectants. Therefore, actin dephosphorylation by SHP-1 is essential for actin depolymerization after BCR stimulation. Our data suggest that SHP-1 plays a pivotal role in reorganization of cytoskeletal architecture inducing actin dephosphorylation. These results clearly demonstrate the direct interaction of SHP-1 with actin. 相似文献
Changes in fresh matter content, protein content, chlorophyl content, ribonuclease activity, and glucose-6-phosphate dehydrogenase
activity, associated with potato Y-virus multiplication (common strain, PVY ordinary) were studied in discs cut from potato
leaves. The results obtained showed that marked decreases in disc fresh matter, in protein content, and in chlorophyll content
occurred during a 5-day-long cultivation period. The activity of glucose-6-phosphate dehydrogenase, that is of the rate limiting
enzyme of the pentose phosphate pathway, and the activity of ribonucleases which characterize the rate and intensity of host
RNA degradation were markedly enhanced in this period. The fact that activity curves of both these enzymes were in linear
relationship with the PVY reproduction curve indicates that not only nucleotides produced in the reactions of the oxidative
pentose phosphate pathway but also nucleotides released in the process of host RNA degradation were the main source of nucleotides
necessary for PVY-RNA biosynthesis, in spite of a high photosynthetic rate. 相似文献
Enzyme replacement therapy (ERT) is a mainstay of treatment for Anderson–Fabry disease (AFD), a pathology with negative effects on the heart and kidneys. However, no reliable biomarkers are available to monitor its efficacy. Therefore, we tested a panel of four microRNAs linked with cardiac and renal damage in order to identify a novel biomarker associated with AFD and modulated by ERT. To this end, 60 patients with a definite diagnosis of AFD and on chronic ERT, and 29 age- and sex-matched healthy individuals, were enrolled by two Italian university hospitals. Only miR-184 met both conditions: its level discriminated untreated AFD patients from healthy individuals (c-statistic = 0.7522), and it was upregulated upon ERT (P < 0.001). On multivariable analysis, miR-184 was independently and inversely associated with a higher risk of cardiac damage (odds ratio = 0.86; 95% confidence interval [CI] = 0.76–0.98; P = 0.026). Adding miR-184 to a comprehensive clinical model improved the prediction of cardiac damage in terms of global model fit, calibration, discrimination, and classification accuracy (continuous net reclassification improvement = 0.917, P < 0.001; integrated discrimination improvement [IDI] = 0.105, P = 0.017; relative IDI = 0.221, 95% CI = 0.002–0.356). Thus, miR-184 is a circulating biomarker of AFD that changes after ERT. Assessment of its level in plasma could be clinically valuable in improving the prediction of cardiac damage in AFD patients.Subject terms: Prognostic markers, Cardiovascular diseases相似文献
Capsid surface shielding of adenovirus vectors with synthetic polymers is an emerging technology to reduce unwanted interactions of the vector particles with cellular and non-cellular host components. While it has been shown that attachment of shielding polymers allows prevention of undesired interactions, it has become evident that a shield which is covalently attached to the vector surface can negatively affect gene transfer efficiency. Reasons are not only a limited receptor-binding ability of the shielded vectors but also a disturbance of intracellular trafficking processes, the latter depending on the interaction of the vector surface with the cellular transport machinery. A solution might be the development of bioresponsive shields that are stably maintained outside the host cell but released upon cell entry to allow for efficient gene delivery to the nucleus. Here we provide a systematic comparison of irreversible versus bioresponsive shields based on synthetic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. In addition, the chemical strategy used for generation of the shield allowed for a traceless bioresponsive shielding, i.e., polymers could be released from the vector particles without leaving residual linker residues. Our data demonstrated that only a bioresponsive shield maintained the high gene transfer efficiency of adenovirus vectors both in vitro and in vivo. As an example for bioresponsive HPMA copolymer release, we analyzed the in vivo gene transfer in the liver. We demonstrated that both the copolymer''s charge and the mode of shielding (irreversible versus traceless bioresponsive) profoundly affected liver gene transfer and that traceless bioresponsive shielding with positively charged HPMA copolymers mediated FX independent transduction of hepatocytes. In addition, we demonstrated that shielding with HPMA copolymers can mediate a prolonged blood circulation of vector particles in mice. Our results have significant implications for the future design of polymer-shielded Ad and provide a deeper insight into the interaction of shielded adenovirus vector particles with the host after systemic delivery. 相似文献
The factual value of genome-wide association studies (GWAS) for the understanding of multifactorial diseases is a matter of intense debate. Practical consequences for the development of more effective therapies do not seem to be around the corner. Here we propose a pragmatic and objective evaluation of how much new biology is arising from these studies, with particular attention to the information that can help prioritize therapeutic targets. We chose multiple sclerosis (MS) as a paradigm disease and assumed that, in pre-GWAS candidate-gene studies, the knowledge behind the choice of each gene reflected the understanding of the disease prior to the advent of GWAS. Importantly, this knowledge was based mainly on non-genetic, phenotypic grounds. We performed single-gene and pathway-oriented comparisons of old and new knowledge in MS by confronting an unbiased list of candidate genes in pre-GWAS association studies with those genes exceeding the genome-wide significance threshold in GWAS published from 2007 on. At the single gene level, the majority (94 out of 125) of GWAS-discovered variants had never been contemplated as plausible candidates in pre-GWAS association studies. The 31 genes that were present in both pre- and post-GWAS lists may be of particular interest in that they represent disease-associated variants whose pathogenetic relevance is supported at the phenotypic level (i.e. the phenotypic information that steered their selection as candidate genes in pre-GWAS association studies). As such they represent attractive therapeutic targets. Interestingly, our analysis shows that some of these variants are targets of pharmacologically active compounds, including drugs that are already registered for human use. Compared with the above single-gene analysis, at the pathway level GWAS results appear more coherent with previous knowledge, reinforcing some of the current views on MS pathogenesis and related therapeutic research. This study presents a pragmatic approach that helps interpret and exploit GWAS knowledge. 相似文献
The broad expression pattern of the G protein-coupled P2Y receptors has demonstrated that these receptors are fundamental determinants in many physiological responses, including neuromodulation, vasodilation, inflammation, and cell migration. P2Y receptors couple either Gq or Gi upon activation, thereby activating different signaling pathways. Ionotropic ATP (P2X) receptors bind extracellular nucleotides, a signal which is transduced within the P2X protein complex into a cation channel opening, which usually leads to intracellular calcium concentration elevation. As such, this family of proteins initiates or shapes several cellular processes including synaptic transmission, gene expression, proliferation, migration, and apoptosis. The ever-growing range of applications for antibodies in the last 30 years attests to their major role in medicine and biological research. Antibodies have been used as therapeutic tools in cancer and inflammatory diseases, as diagnostic reagents (flow cytometry, ELISA, and immunohistochemistry, to name a few applications), and in widespread use in biological research, including Western blot, immunoprecipitation, and ELISPOT. In this article, we will showcase several of the advances that scientists around the world have achieved using the line of antibodies developed at Alomone Labs for P2Y and P2X receptors.
Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens
that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present
study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108–120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX
CP- L2108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue.
Immunogenicity of L2108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In
animal sera the antibodies against the PVX CP and the L2108-120 epitope were found after both methods of vaccine delivery. 相似文献