首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   19篇
  2023年   4篇
  2022年   4篇
  2021年   11篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   3篇
  2015年   16篇
  2014年   16篇
  2013年   15篇
  2012年   22篇
  2011年   17篇
  2010年   12篇
  2009年   12篇
  2008年   12篇
  2007年   12篇
  2006年   11篇
  2005年   13篇
  2004年   13篇
  2003年   16篇
  2002年   10篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1968年   2篇
  1962年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有303条查询结果,搜索用时 281 毫秒
51.

Background

YKL-40 is a chitinase-like glycoprotein encoded by the chitinase 3-like 1 gene, CHI3L1, localized at chromosome 1q32.1. Increased levels of serum YKL-40 have been reported to be a biomarker for asthma and a reduced lung function. Interestingly, the C-allele of the -131 C→G (rs4950928) polymorphism of CHI3L1 has been shown to associate with bronchial hyperresponsiveness and reduced lung function suggesting that variations in CHI3L1 may influence risk of asthma. The objective of the present study was to investigate the association of common variation in the CHI3L1 locus with asthma, atopy and lung function in a large population-based sample of adults.

Methods/Principal Findings

Eleven single nucleotide polymorphisms (SNPs) of CHI3L1 including rs4950928 were genotyped in 6514 individuals. Asthma was defined as self-reported history of physician-diagnosed asthma. Total IgE and specific IgE to inhalant allergens were measured on serum samples. Lung function was measured by spirometry. Homozygosity of the rs4950928 G allele as compared to homozygosity of the C allele was associated with self-reported physician diagnosed asthma (OR 1.5 (95% CI, 1.00–2.26)) and with prevalence of atopic asthma (OR 1.93 (95% CI, 1.21–3.07)) after adjustment for age, sex, smoking status, socio-economic class and BMI. Carriers of rs883125 G allele had a significantly lower prevalence of atopy (OR 0.82 (CI, 0.72; 0.94)) as compared to homozygosity of the C allele. None of the SNPs examined were significantly associated with FEV1. However, two SNPs (rs10399931and rs4950930) appeared to be significantly associated with FEV1/FVC-ratio. Subgroup analyses of never-smokers did not consistently influence the associations in an either positively og negatively way.

Conclusions

In contrast to previous studies, the rs4950928 G allele, and not the C allele, was found to be associated with asthma. A few other SNPs of the CHI3L1 was found to be significantly associated with atopy and FEV1/FVC ratio, respectively. Thus, more studies seem warranted to establish the role of CHI3L1 gene in asthma and atopy.  相似文献   
52.
Lipid membranes structurally define the outer surface and internal organelles of cells. The multitude of proteins embedded in lipid bilayers are clearly functionally important, yet they remain poorly defined. Even today, integral membrane proteins represent a special challenge for current large scale shotgun proteomics methods. Here we used endothelial cell plasma membranes isolated directly from lung tissue to test the effectiveness of four different mass spectrometry-based methods, each with multiple replicate measurements, to identify membrane proteins. In doing so, we substantially expanded this membranome to 1,833 proteins, including >500 lipid-embedded proteins. The best method combined SDS-PAGE prefractionation with trypsin digestion of gel slices to generate peptides for seamless and continuous two-dimensional LC/MS/MS analysis. This three-dimensional separation method outperformed current widely used two-dimensional methods by significantly enhancing protein identifications including single and multiple pass transmembrane proteins; >30% are lipid-embedded proteins. It also profoundly improved protein coverage, sensitivity, and dynamic range of detection and substantially reduced the amount of sample and the number of replicate mass spectrometry measurements required to achieve 95% analytical completeness. Such expansion in comprehensiveness requires a trade-off in heavy instrument time but bodes well for future advancements in truly defining the ever important membranome with its potential in network-based systems analysis and the discovery of disease biomarkers and therapeutic targets. This analytical strategy can be applied to other subcellular fractions and should extend the comprehensiveness of many future organellar proteomics pursuits.The plasma membrane provides a fundamental physical interface between the inside and outside of any cell. Beyond creating a protected compartment with a segregated, distinct, and well controlled internal milieu for the cell, it also mediates a wide variety of basic biological functions including signal transduction, molecular transport, membrane trafficking, cell migration, cell-cell interactions, intercellular communication, and even drug resistance. Plasma membrane-associated proteins, especially integral membrane proteins (IMPs)1 that traverse the lipid bilayer, are key elements mediating these vital biological processes. Consistent with its fundamental importance in both normal cellular functions and pathophysiology, the plasma membrane has also been targeted extensively for biomarker discovery and drug development. In fact, more than two-thirds of known targets for existing drugs are plasma membrane proteins (1).Despite the potential benefits, profiling the proteome of plasma membranes comprehensively using standard large scale methods including MS-based strategies has been limited and technically quite challenging. Intrinsic hydrophobicity, a wide concentration range of proteins, and other factors have hampered IMP resolution and identification using conventional two-dimensional gel electrophoresis. Gel and gel-free protein separations, including combinations of both, have been reported as an alternative to two-dimensional gel electrophoresis (29). Yet most such efforts have focused predominantly on identifying rather soluble proteins from body fluids (i.e. plasma, serum, and cerebrospinal fluid), cell lysates, or cytoplasm. These proteins, unlike IMPs, are relatively abundant and readily susceptible to enzymatic digestion in solution. Various attempts have been made to solubilize and enrich for IMPs, including different detergents, solvents, high pH solutions, and affinity purification (1022). Even when organellar membranes are enriched through isolation by subcellular fractionation, the yield of proteins identified has been below expectation, especially for multipass transmembrane proteins such as G-protein-coupled receptors.Here we systematically characterize four analytical approaches to enhance the identification of proteins, specifically those embedded in plasma membranes isolated directly from vascular endothelium in rat lung. Endothelial cells (ECs) constitute the tissue-blood interface that controls many important physiological functions, including tissue homeostasis, nutrition, vasomotion, and even drug delivery. In vivo mapping of the EC plasma membrane proteome provides unique opportunities for extending basic understanding in vascular biology and for directing the delivery of therapeutic and imaging agents in vivo (2325). But it also presents distinct challenges beyond those generally associated with extraction, solubilization, and identification of IMPs in cells and tissues. ECs form a thin monolayer lining each blood vessel. They constitute a very small fraction of all the cells existing in tissue, thereby making it difficult to isolate sufficiently pure EC plasma membrane fractions for proteomics analysis using conventional subcellular fractionation techniques. Although relatively simple to isolate from tissue and grow in culture, ECs require cues from the tissue microenvironment to maintain their tissue-specific qualities and thus undergo rapid and considerable phenotypic drift after isolation (26).We have developed a specialized coating procedure using colloidal silica nanoparticles perfused through the blood vessels of the tissue to isolate luminal plasma membranes of the vascular endothelium as they exist natively in tissue (2628). Our initial survey of these plasma membranes isolated directly from rat lungs used primarily three standard analytical techniques of the time: two-dimensional electrophoresis, Western analysis, and the shotgun method of two-dimensional liquid chromatography-tandem mass spectrometry (24, 26). We identified 450 proteins of which only ∼15% were IMPs. Although at the time this was a notable total number of proteins, more IMPs are expected. In fact, this large scale 2DC study did not identify several well known EC surface marker proteins, including specific enzymes, adhesion molecules, and growth factor receptors.Here we comparatively analyze four different MS-based strategies involving two- and three-dimensional separation by combining protein prefractionation via SDS-PAGE with in-gel digestion to produce peptides separated by one- and two-dimensional nano-HPLC before seamless and continuous MS analysis. Each method used multiple replicate measurements to comprehensively identify proteins, especially IMPs, and in doing so achieved a clear statistical definition of completeness that permits meaningful comparisons. Ultimately this analysis greatly expanded the EC plasma membranome to 1,833 proteins of which nearly 30% are membrane-embedded.  相似文献   
53.
Pre‐dispersal seed predation can greatly reduce crop size affecting recruitment success. In addition, non‐fatal damage by seed predators may allow infection by fungi responsible for post‐dispersal seed losses. The objectives of this study were (1) to quantify pre‐dispersal seed predation and fungal infection in a Neotropical tree species, Luehea seemannii, that produces dehiscent fruits and wind‐dispersed seeds, and (2) to link pre‐dispersal effects on seed quality to seed survival in the soil. To examine how seed predators and fungi influence seed losses, mesh exclosures, fungicide, and the combination of both treatments were applied to separate branches in the canopy of trees in Gamboa and Parque Natural Metropolitano (PNM), Panama. To determine if treatments affect seed viability and survival in the soil, half of the seeds collected from each treatment were buried for 4 weeks in forest soils and subsequently allowed to germinate before and after the breaking of dormancy. Overall, 24 percent of developing fruit were lost to insect attack. In contrast, fungi infected only 3 percent of seeds at the pre‐dispersal stage. For seeds germinated directly after collection, fungicide significantly increased germination in the wetter site (Gamboa) but decreased germination in the drier site (PNM). The pre‐dispersal insect exclosure treatment increased the fraction of seeds that remained dormant after burial in the soil. This result suggests that exposure to insect predators may cause physical damage to seeds that results in the loss of physical dormancy but does not necessarily increase the susceptibility of seeds to pathogen attack in the soil.  相似文献   
54.
In cultivated tetraploid peanut (2n = 4x = 40, AABB), the conversion of oleic acid to linoleic acid is mainly catalyzed by the Δ12 fatty acid desaturase (FAD). Two homoeologous genes (FAD2A and FAD2B) encoding for the desaturase are located on the A and B genomes, respectively. Abolishing or reducing the desaturase activity by gene mutation can significantly increase the oleic acid/linoleic acid ratio. F435-derived high-oleate peanut cultivars contain two key mutations within the Δ12 fatty acid desaturase gene which include a 1-bp substitution of G:C→A:T in the A genome and a 1-bp insertion of A:T in the B genome. Both of these mutations contribute to abolishing or reducing the desaturase activity, leading to accumulation of oleate versus linoleate. Currently, detection of FAD2 alleles can be achieved by a cleaved amplified polymorphic sequence marker for the A genome and a real-time polymerase chain reaction (PCR) marker for the B genome; however, detection of these key mutations has to use different assay platforms. Therefore, a simple PCR assay for detection of FAD2 alleles on both genomes was developed by designing allele-specific primers and altering PCR annealing temperatures. This assay was successfully used for detecting FAD2 alleles in peanut. Gas chromatography (GC) was used to determine fatty acid composition of PCR-assayed genotypes. The results from the PCR assay and GC analysis were consistent. This PCR assay is quick, reliable, economical, and easy to use. Implementation of this PCR assay will greatly enhance the efficiency of germplasm characterization and marker-assisted selection of high oleate in peanut.  相似文献   
55.
Mast cells have emerged as critical intermediaries in the regulation of peripheral tolerance. Their presence in many precancerous lesions and tumors is associated with a poor prognosis, suggesting mast cells may promote an immunosuppressive tumor microenvironment and impede the development of protective anti-tumor immunity. The studies presented herein investigate how mast cells influence tumor-specific T cell responses. Male MB49 tumor cells, expressing HY antigens, induce anti-tumor IFN-??+ T cell responses in female mice. However, normal female mice cannot control progressive MB49 tumor growth. In contrast, mast cell-deficient c-KitWsh (Wsh) female mice controlled tumor growth and exhibited enhanced survival. The role of mast cells in curtailing the development of protective immunity was shown by increased mortality in mast cell-reconstituted Wsh mice with tumors. Confirmation of enhanced immunity in female Wsh mice was provided by (1) higher frequency of tumor-specific IFN-??+ CD8+ T cells in tumor-draining lymph nodes compared with WT females and (2) significantly increased ratios of intratumoral CD4+ and CD8+ T effector cells relative to tumor cells in Wsh mice compared to WT. These studies are the first to reveal that mast cells impair both regional adaptive immune responses and responses within the tumor microenvironment to diminish protective anti-tumor immunity.  相似文献   
56.
57.
58.
Infection of genetically susceptible C57BL/6 mice with the LP-BM5 isolate of murine retroviruses cause profound splenomegaly, hypergammaglobulinemia, lymphadenopathy, and an immunodeficiency syndrome which includes the development of terminal B-cell lymphomas. Because many of these and the other manifestations of LP-BM5 virus-induced disease are similar to those seen in AIDS, this syndrome has been named murine AIDS, or MAIDS. Previous reports have shown that the onset of MAIDS depends on the presence of both CD4+ T cells and B cells and have suggested that CD4+ T-cell-B-cell interactions are important to disease pathogenesis. Here, we assessed the possibility that interactions between CD40 and its ligand on activated CD4+ T cells, CD40 ligand/gp39, are involved in the development of MAIDS. To test this hypothesis, LP-BM5-infected B6 mice were treated in vivo with anti-gp39 monoclonal antibody. As a result, MAIDS-associated splenomegaly, hypergammaglobulinemia, germinal center formation, and the loss of in vitro responsiveness to the T- and B-cell mitogens concanavalin A and lipopolysaccharide were inhibited. Anti-gp39 monoclonal antibody-treated LP-BM5-infected mice were also able to mount essentially normal alloantigen-specific cytolytic T-lymphocyte responses. These results support the possibility that molecular interactions between CD40 and gp39 are critical to the development of MAIDS.  相似文献   
59.
60.
Eradication of HIV infection will require the identification of all cellular reservoirs that harbor latent infection. Despite low or lack of CD4 receptor expression on Vδ2 T cells, infection of these cells has previously been reported. We found that upregulation of the CD4 receptor may render primary Vδ2 cells target for HIV infection in vitro and we propose that HIV-induced immune activation may allow infection of γδ T cells in vivo. We assessed the presence of latent HIV infection by measurements of DNA and outgrowth assays within Vδ2 cells in 18 aviremic patients on long-standing antiretroviral therapy. In 14 patients we recovered latent but replication-competent HIV from highly purified Vδ2 cells demonstrating that peripheral Vδ2 T cells are a previously unrecognized reservoir in which latent HIV infection is unexpectedly frequent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号