首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2242篇
  免费   270篇
  2023年   11篇
  2022年   30篇
  2021年   56篇
  2020年   29篇
  2019年   49篇
  2018年   55篇
  2017年   50篇
  2016年   72篇
  2015年   119篇
  2014年   108篇
  2013年   136篇
  2012年   154篇
  2011年   169篇
  2010年   90篇
  2009年   93篇
  2008年   124篇
  2007年   101篇
  2006年   87篇
  2005年   80篇
  2004年   90篇
  2003年   74篇
  2002年   69篇
  2001年   60篇
  2000年   46篇
  1999年   56篇
  1998年   28篇
  1997年   22篇
  1996年   31篇
  1995年   23篇
  1994年   17篇
  1993年   13篇
  1992年   38篇
  1991年   18篇
  1990年   38篇
  1989年   36篇
  1988年   30篇
  1987年   16篇
  1986年   14篇
  1985年   23篇
  1984年   18篇
  1983年   15篇
  1982年   9篇
  1981年   9篇
  1980年   9篇
  1979年   10篇
  1978年   12篇
  1977年   13篇
  1974年   9篇
  1973年   10篇
  1968年   9篇
排序方式: 共有2512条查询结果,搜索用时 156 毫秒
991.
Interactions between soluble enzymes and interfaces of organic solvent drops or gas bubbles have a very negative effect on the operational stability of the soluble enzymes. In this study, the formation of a hydrophilic shell around the enzyme has been attempted using dextran-aldehyde which would prevent the interaction between enzyme and hydrophobic interfaces with minimal modification of the enzyme surface. After optimizing the size of the dextran (that was found to play a critical role), three different enzymes (glucose oxidase, d-amino acid oxidase, and trypsin) have been conjugated with dextran-aldehyde and their stability towards organic-aqueous and air-liquid interfaces has been evaluated. The treatment itself proved to be very low-cost in terms of activity and was highly stabilizing for the three enzymes assayed. The conjugated preparation of the three assayed enzymes remained fully active in the presence of air-liquid interfaces for at least 10h. However, the unmodified enzymes lost more than 50% of activity within the first hour of the experiments except for trypsin which kept 38% activity after 12h while the trypsin dextran-aldehyde conjugate maintained 100% enzyme activity. Similar results were achieved in the presence of stirred organic solvent-aqueous buffer biphasic system, although in this case some activity was lost by the action of the soluble portion of the organic solvent. In fact, this treatment seems to be also effective to improve the resistance to the action of organic solvent.  相似文献   
992.
AIF deficiency compromises oxidative phosphorylation   总被引:30,自引:0,他引:30  
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, after apoptosis induction, translocates to the nucleus where it participates in apoptotic chromatinolysis. Here, we show that human or mouse cells lacking AIF as a result of homologous recombination or small interfering RNA exhibit high lactate production and enhanced dependency on glycolytic ATP generation, due to severe reduction of respiratory chain complex I activity. Although AIF itself is not a part of complex I, AIF-deficient cells exhibit a reduced content of complex I and of its components, pointing to a role of AIF in the biogenesis and/or maintenance of this polyprotein complex. Harlequin mice with reduced AIF expression due to a retroviral insertion into the AIF gene also manifest a reduced oxidative phosphorylation (OXPHOS) in the retina and in the brain, correlating with reduced expression of complex I subunits, retinal degeneration, and neuronal defects. Altogether, these data point to a role of AIF in OXPHOS and emphasize the dual role of AIF in life and death.  相似文献   
993.
POEtic: an electronic tissue for bio-inspired cellular applications   总被引:1,自引:0,他引:1  
In this paper, we introduce the general architecture of a new electronic tissue called POEtic. This reconfigurable circuit is designed to ease the implementation of bio-inspired systems that bring cellular applications into play. It contains special features that allow a developer to realize systems that require evolution (Phylogenesis), development (Ontogenesis), and/or learning (Epigenesis). A dynamic routing algorithm has been added to a structure similar to that of common commercial FPGAs, in order to allow the creation of data paths between cells. As the creation of these paths is dynamic, it is possible to add new cells or to repair faulty ones at runtime.  相似文献   
994.
DNA polymerase δ (Pol δ) plays a central role in eukaryotic chromosomal DNA replication, repair and recombination. In fission yeast, Pol δ is a tetrameric enzyme, comprising the catalytic subunit Pol3 and three smaller subunits, Cdc1, Cdc27 and Cdm1. Previous studies have demonstrated a direct interaction between Pol3 and Cdc1, the B-subunit of the complex. Here it is shown that removal of the tandem zinc finger modules located at the C-terminus of Pol3 by targeted proteolysis renders the Pol3 protein non-functional in vivo, and that the C-terminal zinc finger module ZnF2 is both necessary and sufficient for binding to the B-subunit in vivo and in vitro. Extensive mutagenesis of the ZnF2 module identifies important residues for B-subunit binding. In particular, disruption of the ZnF2 module by substitution of the putative metal-coordinating cysteines with alanine abolishes B-subunit binding and in vivo function. Finally, evidence is presented suggesting that the ZnF region is post-translationally modified in fission yeast cells.  相似文献   
995.
996.
CCR7 is necessary to direct dendritic cells (DCs) to secondary lymphoid nodes and to elicit an adaptative immune response. Despite its importance, little is known about the molecular mechanisms used by CCR7 to direct DCs to lymph nodes. In addition to chemotaxis, CCR7 regulates the migratory speed of DCs. We investigated the intracellular pathways that regulate CCR7-dependent chemotaxis and migratory speed. We found that CCR7 induced a G(i)-dependent activation of MAPK members ERK1/2, JNK, and p38, with ERK1/2 and p38 controlling JNK. MAPK members regulated chemotaxis, but not the migratory speed, of DCs. CCR7 induced activation of PI3K/Akt; however, these enzymes did not regulate either chemotaxis or the speed of DCs. CCR7 also induced activation of the GTPase Rho, the tyrosine kinase Pyk2, and inactivation of cofilin. Pyk2 activation was independent of G(i) and Src and was dependent on Rho. Interference with Rho or Pyk2 inhibited cofilin inactivation and the migratory speed of DCs, but did not affect chemotaxis. Interference with Rho/Pyk2/cofilin inhibited DC migratory speed even in the absence of chemokines, suggesting that this module controls the speed of DCs and that CCR7, by activating its components, induces an increase in migratory speed. Therefore, CCR7 activates two independent signaling modules, one involving G(i) and a hierarchy of MAPK family members and another involving Rho/Pyk2/cofilin, which control, respectively, chemotaxis and the migratory speed of DCs. The use of independent signaling modules to control chemotaxis and speed can contribute to regulate the chemotactic effects of CCR7.  相似文献   
997.
998.
The guinea pig adrenal gland, analogous to the human, possesses the capacity to synthesize C(19) steroids. In order to further understand the control of guinea pig adrenal steroidogenesis we undertook the characterization of the guinea pig 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase (3beta-HSD) expressed in the adrenal gland. A cDNA clone encoding guinea pig 3beta-HSD isolated from a guinea pig adrenal library is predicted to encode a protein of 373 amino acid residues and 41,475Da. Ribonuclease protection assay suggests that this cDNA corresponds to the predominant, if not the sole, mRNA species detectable in total RNA from the guinea pig adrenal gland, ovary and testis. The guinea pig 3beta-HSD shows a similar affinity for both pregnenolone and dehydroepiandrosterone, and in addition, a 17beta-HSD type II-like activity was also observed. A phylogenetical analysis of the 3beta-HSD gene family demonstrates that the guinea pig is in a parallel branch to the myomorpha group supporting the hypothesis that the guinea pig lineage has branched off after the divergence among primates, artiodactyls and rodents, suggesting the paraphyly of the order rodentia.  相似文献   
999.
1000.
The retinal Müller glial cells, can enhance the survival and activity of neurons, especially of retinal ganglion cells (RGCs), which are the neurons affected in diseases such as glaucoma, diabetes, and retinal ischemia. It has been demonstrated that Müller glia release neurotrophic factors that support RGC survival, yet many of these factors remain to be elucidated. To define these neurotrophic factors, a quantitative proteomic approach was adopted aiming at identifying neuroprotective proteins. First, the conditioned medium from porcine Müller cells cultured in vitro under three different conditions were isolated and these conditioned media were tested for their capacity to promote survival of primary adult RGCs in culture. Mass spectrometry was used to identify and quantify proteins in the conditioned medium, and osteopontin (SPP1), clusterin (CLU), and basigin (BSG) were selected as candidate neuroprotective factors. SPP1 and BSG significantly enhance RGC survival in vitro, indicating that the survival‐promoting activity of the Müller cell secretome is multifactorial, and that SPP1 and BSG contribute to this activity. Thus, the quantitative proteomics strategy identify proteins secreted by Müller glia that are potentially novel neuroprotectants, and it may also serve to identify other bioactive proteins or molecular markers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号