首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1531篇
  免费   129篇
  2022年   10篇
  2021年   28篇
  2020年   15篇
  2018年   22篇
  2017年   16篇
  2016年   34篇
  2015年   53篇
  2014年   60篇
  2013年   81篇
  2012年   80篇
  2011年   103篇
  2010年   52篇
  2009年   58篇
  2008年   72篇
  2007年   69篇
  2006年   84篇
  2005年   60篇
  2004年   64篇
  2003年   47篇
  2002年   49篇
  2001年   23篇
  2000年   23篇
  1999年   13篇
  1998年   27篇
  1997年   16篇
  1996年   14篇
  1995年   15篇
  1994年   18篇
  1993年   14篇
  1992年   15篇
  1991年   16篇
  1990年   14篇
  1989年   15篇
  1988年   18篇
  1987年   12篇
  1986年   21篇
  1985年   12篇
  1984年   11篇
  1983年   10篇
  1982年   16篇
  1981年   14篇
  1980年   15篇
  1979年   19篇
  1978年   17篇
  1976年   10篇
  1969年   10篇
  1936年   18篇
  1933年   13篇
  1932年   9篇
  1931年   11篇
排序方式: 共有1660条查询结果,搜索用时 31 毫秒
991.
992.
Erwinia chrysanthemi 3937 (Ech3937) is a phytopathogenic bacterium with a wide host range. The pectinolytic enzymes secreted by the bacterium and the type III secretion system (T3SS) are essential for full virulence. We used the green fluorescent protein gene as a reporter to investigate the expression of dspE (a putative T3SS effector) and pelD (a major pectin-degrading enzyme) in populations of Ech3937 under different conditions. Gene expression was analyzed by measuring the fluorescence intensity of individual cells with a fluorescence-activated cell sorter. Ech3937 dspE was induced in minimal medium (MM) with only a portion of Ech3937 cells (43.03%) expressing dspE after 12 h of culture. The nutrient-rich King's medium B did not fully eliminate the expression of dspE; a small percentage of Ech3937 cells (5.55%) was able to express dspE after 12 h of culture in this medium. In all, 68.95% of Ech3937 cells expressed pelD after 12 h of culture in MM supplemented with polygalacturonic acid (PGA). However, 96.34% of Echl31 cells (an hrpL deletion mutant of Ech3937) expressed pelD after 12 h of culture in MM supplemented with PGA. In potato tubers, 6.32% of the bacterial cells expressed dspE 2 h after inoculation, whereas only 0.25% of the cells expressed pelD. However, after 24 h, the percentage of cells expressing pelD (68.48%) was approximately 3.5 times that of cells expressing dspE (19.39%). In contrast to potato tubers, similar proportion of Ech3937 cells expressing dspE (39.34%) and pelD (40.30%) were observed in Chinese cabbage 24 h after inoculation. From promoter activity and real-time quantitative results, the expression of pelD in Ech3937 was demonstrated to be downregulated by HrpL in MM supplemented with PGA.  相似文献   
993.
994.
We describe here a series of N-(quinolin-8-yl)benzenesulfonamides capable of suppressing the NFkappaB pathway identified from two high-throughput screens run at two centers of the NIH Molecular Libraries Initiative. These small molecules were confirmed in both primary and secondary assays of NFkappaB activation and expanded upon through analogue synthesis. The series exhibited potencies in the cell-based assays at as low as 0.6 microM, and several indications suggest that the targeted activity lies within a common region of the NFkappaB pathway.  相似文献   
995.
A series of substituted 3,6-diphenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines were prepared and analyzed as inhibitors of phosphodiesterase 4 (PDE4). Synthesis, structure-activity relationships, and the selectivity of a highly potent analogue against related phosphodiesterase isoforms are presented.  相似文献   
996.
As a major component of plant specialized metabolism, phenylpropanoid biosynthetic pathways provide anthocyanins for pigmentation, flavonoids such as flavones for protection against UV photodamage, various flavonoid and isoflavonoid inducers of Rhizobium nodulation genes, polymeric lignin for structural support and assorted antimicrobial phytoalexins. As constituents of plant-rich diets and an assortment of herbal medicinal agents, the phenylpropanoids exhibit measurable cancer chemopreventive, antimitotic, estrogenic, antimalarial, antioxidant and antiasthmatic activities. The health benefits of consuming red wine, which contains significant amounts of 3,4',5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the increasing awareness in the medical community and the public at large as to the potential dietary importance of these plant derived compounds. As recently as a decade ago, little was known about the three-dimensional structure of the enzymes involved in these highly branched biosynthetic pathways. Ten years ago, we initiated X-ray crystallographic analyses of key enzymes of this pathway, complemented by biochemical and enzyme engineering studies. We first investigated chalcone synthase (CHS), the entry point of the flavonoid pathway, and its close relative stilbene synthase (STS). Work soon followed on the O-methyl transferases (OMTs) involved in modifications of chalcone, isoflavonoids and metabolic precursors of lignin. More recently, our groups and others have extended the range of phenylpropanoid pathway structural investigations to include the upstream enzymes responsible for the initial recruitment of phenylalanine and tyrosine, as well as a number of reductases, acyltransferases and ancillary tailoring enzymes of phenylpropanoid-derived metabolites. These structure-function studies collectively provide a comprehensive view of an important aspect of phenylpropanoid metabolism. More specifically, these atomic resolution insights into the architecture and mechanistic underpinnings of phenylpropanoid metabolizing enzymes contribute to our understanding of the emergence and on-going evolution of specialized phenylpropanoid products, and underscore the molecular basis of metabolic biodiversity at the chemical level. Finally, the detailed knowledge of the structure, function and evolution of these enzymes of specialized metabolism provide a set of experimental templates for the enzyme and metabolic engineering of production platforms for diverse novel compounds with desirable dietary and medicinal properties.  相似文献   
997.
There is increasing evidence that Trypanosoma cruzi antioxidant enzymes play a key immune evasion role by protecting the parasite against macrophage-derived reactive oxygen and nitrogen species. Using T. cruzi transformed to overexpress the peroxiredoxins TcCPX (T. cruzi cytosolic tryparedoxin peroxidase) and TcMPX (T. cruzi mitochondrial tryparedoxin peroxidase), we found that both cell lines readily detoxify cytotoxic and diffusible reactive oxygen and nitrogen species generated in vitro or released by activated macrophages. Parasites transformed to overexpress TcAPX (T. cruzi ascorbate-dependent haemoperoxidase) were also more resistant to H2O2 challenge, but unlike TcMPX and TcCPX overexpressing lines, the TcAPX overexpressing parasites were not resistant to peroxynitrite. Whereas isolated tryparedoxin peroxidases react rapidly (k=7.2 x 10(5) M(-1) x s(-1)) and reduce peroxynitrite to nitrite, our results demonstrate that both TcMPX and TcCPX peroxiredoxins also efficiently decompose exogenous- and endogenously-generated peroxynitrite in intact cells. The degree of protection provided by TcCPX against peroxynitrite challenge results in higher parasite proliferation rates, and is demonstrated by inhibition of intracellular redox-sensitive fluorescence probe oxidation, protein 3-nitrotyrosine and protein-DMPO (5,5-dimethylpyrroline-N-oxide) adduct formation. Additionally, peroxynitrite-mediated over-oxidation of the peroxidatic cysteine residue of peroxiredoxins was greatly decreased in TcCPX overexpressing cells. The protective effects generated by TcCPX and TcMPX after oxidant challenge were lost by mutation of the peroxidatic cysteine residue in both enzymes. We also observed that there is less peroxynitrite-dependent 3-nitrotyrosine formation in infective metacyclic trypomastigotes than in non-infective epimastigotes. Together with recent reports of up-regulation of antioxidant enzymes during metacyclogenesis, our results identify components of the antioxidant enzyme network of T. cruzi as virulence factors of emerging importance.  相似文献   
998.
The thyroid-stimulating hormone (TSH; thyrotropin) receptor belongs to the glycoprotein hormone receptor subfamily of 7-transmembrane spanning receptors. TSH receptor (TSHR) is expressed mainly in thyroid follicular cells and is activated by TSH, which regulates the growth and function of thyroid follicular cells. Recombinant TSH is used in diagnostic screens for thyroid cancer, especially in patients after thyroid cancer surgery. Currently, no selective small-molecule agonists of the TSHR are available. To screen for novel TSHR agonists, the authors miniaturized a commercially available cell-based cyclic adenosine 3',5' monophosphate (cAMP) assay into a 1536-well plate format. This assay uses an HEK293 cell line stably transfected with the TSHR coupled to a cyclic nucleotide gated ion channel as a biosensor. From a quantitative high-throughput screen of 73,180 compounds in parallel with a parental cell line (without the TSHR), 276 primary active compounds were identified. The activities of the selected active compounds were further confirmed in an orthogonal homogeneous time-resolved fluorescence cAMP-based assay. Forty-nine compounds in several structural classes have been confirmed as the small-molecule TSHR agonists that will serve as a starting point for chemical optimization and studies of thyroid physiology in health and disease.  相似文献   
999.
Standard cell culture conditions do not reflect the physiological environment in terms of oxygen tension (20% vs 3%). The effects of lowering oxygen tension on cell proliferation in culture can be beneficial as well as detrimental depending on the cell line studied, but the molecular mechanism underlying such effects is not fully understood. We observed that the proliferative capacity of the rat cell lines NRK and INS-1 was inhibited when cultured under 3% oxygen as compared to 20% oxygen. Suppression of proliferation in NRK cells was accompanied by induction of DNA double strand breaks whereas in INS-1 cells it was accompanied by up-regulation of p53 and p27. Although Sirt1 was up-regulated in both cell lines by 3% oxygen the effects on antioxidant enzymes (MnSOD, CuZnSOD and catalase) were cell line specific. Marked up-regulation of heme oxygenase-1 (HO-1) was detected in both NRK and INS-1 cells when cultured in 3% oxygen. HO-1 expression can be readily induced by exposure to hydrogen peroxide in culture. These results suggest that reduced oxygen tension suppresses the proliferative capacity of these two cell lines through a stress response that is similar to an oxidative stress response but the molecular events that lead to the reduced cell proliferation are cell line specific.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号