全文获取类型
收费全文 | 2629篇 |
免费 | 121篇 |
国内免费 | 2篇 |
专业分类
2752篇 |
出版年
2022年 | 14篇 |
2021年 | 15篇 |
2020年 | 18篇 |
2019年 | 22篇 |
2018年 | 27篇 |
2017年 | 28篇 |
2016年 | 69篇 |
2015年 | 71篇 |
2014年 | 103篇 |
2013年 | 170篇 |
2012年 | 157篇 |
2011年 | 182篇 |
2010年 | 100篇 |
2009年 | 92篇 |
2008年 | 132篇 |
2007年 | 128篇 |
2006年 | 146篇 |
2005年 | 160篇 |
2004年 | 145篇 |
2003年 | 152篇 |
2002年 | 140篇 |
2001年 | 50篇 |
2000年 | 46篇 |
1999年 | 34篇 |
1998年 | 50篇 |
1997年 | 36篇 |
1996年 | 25篇 |
1995年 | 28篇 |
1994年 | 29篇 |
1993年 | 15篇 |
1992年 | 33篇 |
1991年 | 22篇 |
1990年 | 34篇 |
1989年 | 21篇 |
1988年 | 24篇 |
1987年 | 14篇 |
1986年 | 25篇 |
1985年 | 20篇 |
1984年 | 17篇 |
1983年 | 22篇 |
1982年 | 19篇 |
1981年 | 10篇 |
1980年 | 7篇 |
1979年 | 10篇 |
1977年 | 6篇 |
1976年 | 9篇 |
1974年 | 16篇 |
1973年 | 9篇 |
1971年 | 8篇 |
1969年 | 7篇 |
排序方式: 共有2752条查询结果,搜索用时 15 毫秒
91.
Sarah A. Kessans Mark D. Linhart Nobuyuki Matoba Tsafrir Mor 《Plant biotechnology journal》2013,11(6):681-690
The transmembrane HIV‐1 envelope protein gp41 has been shown to play critical roles in the viral mucosal transmission and infection of CD4+ cells. Gag is a structural protein configuring the enveloped viral particles and has been suggested to constitute a target of the cellular immunity that may control viral load. We hypothesized that HIV enveloped virus‐like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the membrane proximal external, transmembrane and cytoplasmic domains (dgp41) could be expressed in plants. To this end, plant‐optimized HIV‐1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a Tobamovirus‐based expression system or a combination of both. Our results of biophysical, biochemical and electron microscopy characterization demonstrates that plant cells could support not only the formation of enveloped HIV‐1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These findings provide further impetus for the journey towards a broadly efficacious and inexpensive subunit vaccine against HIV‐1. 相似文献
92.
Takakazu?OkaEmail author Yoshio?Kanemitsu Nobuyuki?Sudo Haruo?Hayashi Kae?Oka 《BioPsychoSocial medicine》2013,7(1):7
Background
Low-grade fever is a common symptom in patients with chronic fatigue syndrome (CFS), but the mechanisms responsible for its development are poorly understood. We submit this case report that suggests that psychological stress contributes to low-grade fever in CFS.Case presentation
A 26-year-old female nurse with CFS was admitted to our hospital. She had been recording her axillary temperature regularly and found that it was especially high when she felt stress at work. To assess how psychological stress affects temperature and to investigate the possible mechanisms for this hyperthermia, we conducted a 60-minute stress interview and observed the changes in the following parameters: axillary temperature, fingertip temperature, systolic blood pressure, diastolic blood pressure, heart rate, plasma catecholamine levels, and serum levels of interleukin (IL)-1β and IL-6 (pyretic cytokines), tumor necrosis factor-α and IL-10 (antipyretic cytokines). The stress interview consisted of recalling and talking about stressful events. Her axillary temperature at baseline was 37.2°C, increasing to 38.2°C by the end of the interview. In contrast, her fingertip temperature decreased during the interview. Her heart rate, systolic and diastolic blood pressures, and plasma levels of noradrenaline and adrenaline increased during the interview; there were no significant changes in either pyretic or antipyretic cytokines during or after the interview.Conclusions
A stress interview induced a 1.0°C increase in axillary temperature in a CFS patient. Negative emotion-associated sympathetic activation, rather than pyretic cytokine production, contributed to the increase in temperature induced by the stress interview. This suggests that psychological stress may contribute to the development or the exacerbation of low-grade fever in some CFS patients.93.
Hideaki Takano Tatsuya Nishiyama Sho-ichi Amano Teruhiko Beppu Michihiko Kobayashi Kenji Ueda 《Journal of industrial microbiology & biotechnology》2016,43(2-3):143-148
Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community. 相似文献
94.
Yoh Wada Ge‐Hong Sun‐Wada Nobuyuki Kawamura Jyunichiro Yasukawa 《Birth defects research. Part C, Embryo today : reviews》2016,108(1):33-44
Eukaryotes have evolved an array of membrane compartments constituting secretory and endocytic pathways that allow the flow of materials. Both pathways perform important regulatory roles. The secretory pathway is essential for the production of extracellular, secreted signal molecules, but its function is not restricted to a mere route connecting intra‐ and extracellular compartments. Post‐translational modifications also play an integral function in the secretory pathway and are implicated in developmental regulation. The endocytic pathway serves as a platform for relaying signals from the extracellular stimuli to intracellular mediators, and then ultimately inducing signal termination. Here, we discuss recent studies showing that dysfunction in membrane dynamics causes patterning defects in embryogenesis and tissue morphogenesis in mammals. Birth Defects Research (Part C) 108:33–44, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
95.
Yageta Y Ishii Y Morishima Y Masuko H Ano S Yamadori T Itoh K Takeuchi K Yamamoto M Hizawa N 《Journal of virology》2011,85(10):4679-4690
Influenza virus is a common respiratory tract viral infection. Although influenza can be fatal in patients with chronic pulmonary diseases such as chronic obstructive pulmonary disease, its pathogenesis is not fully understood. The Nrf2-mediated antioxidant system is essential to protect the lungs from oxidative injury and inflammation. In the present study, we investigated the role of Nrf2 in protection against influenza virus-induced pulmonary inflammation after cigarette smoke exposure with both in vitro and in vivo approaches. For in vitro analyses, peritoneal macrophages isolated from wild-type and Nrf2-deficient mice were treated with poly(I:C) and/or cigarette smoke extract. For in vivo analysis, these mice were infected with influenza A virus with or without exposure to cigarette smoke. In Nrf2-deficient macrophages, NF-κB activation and the induction of its target inflammatory genes were enhanced after costimulation with cigarette smoke extract and poly(I:C) compared with wild-type macrophages. The induction of antioxidant genes was observed for the lungs of wild-type mice but not those of Nrf2-deficient mice after cigarette smoke exposure. Cigarette smoke-exposed Nrf2-deficient mice showed higher rates of mortality than did wild-type mice after influenza virus infection, with enhanced peribronchial inflammation, lung permeability damage, and mucus hypersecretion. Lung oxidant levels and NF-κB-mediated inflammatory gene expression in the lungs were also enhanced in Nrf2-deficient mice. Our data indicate that the antioxidant pathway controlled by Nrf2 is pivotal for protection against the development of influenza virus-induced pulmonary inflammation and injury under oxidative conditions. 相似文献
96.
Y Nakayama N Nakamura S Oki M Wakabayashi Y Ishihama A Miyake N Itoh A Kurosaka 《The Journal of biological chemistry》2012,287(38):32222-32235
We previously identified a novel polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) gene, which is designated Williams-Beuren syndrome chromosome region 17 (WBSCR17) because it is located in the chromosomal flanking region of the Williams-Beuren syndrome deletion. Recent genome-scale analysis of HEK293T cells treated with a high concentration of N-acetylglucosamine (GlcNAc) demonstrated that WBSCR17 was one of the up-regulated genes possibly involved in endocytosis (Lau, K. S., Khan, S., and Dennis, J. W. (2008) Genome-scale identification of UDP-GlcNAc-dependent pathways. Proteomics 8, 3294-3302). To assess its roles, we first expressed recombinant WBSCR17 in COS7 cells and demonstrated that it was N-glycosylated and localized mainly in the Golgi apparatus, as is the case for the other GalNAc-Ts. Assay of recombinant WBSCR17 expressed in insect cells showed very low activity toward typical mucin peptide substrates. We then suppressed the expression of endogenous WBSCR17 in HEK293T cells using siRNAs and observed phenotypic changes of the knockdown cells with reduced lamellipodium formation, altered O-glycan profiles, and unusual accumulation of glycoconjugates in the late endosomes/lysosomes. Analyses of endocytic pathways revealed that macropinocytosis, but neither clathrin- nor caveolin-dependent endocytosis, was elevated in the knockdown cells. This was further supported by the findings that the overexpression of recombinant WBSCR17 stimulated lamellipodium formation, altered O-glycosylation, and inhibited macropinocytosis. WBSCR17 therefore plays important roles in lamellipodium formation and the regulation of macropinocytosis as well as lysosomes. Our study suggests that a subset of O-glycosylation produced by WBSCR17 controls dynamic membrane trafficking, probably between the cell surface and the late endosomes through macropinocytosis, in response to the nutrient concentration as exemplified by environmental GlcNAc. 相似文献
97.
Goto T Teraminami A Lee JY Ohyama K Funakoshi K Kim YI Hirai S Uemura T Yu R Takahashi N Kawada T 《The Journal of nutritional biochemistry》2012,23(7):768-776
Tiliroside contained in several dietary plants, such as rose hips, strawberry and raspberry, is a glycosidic flavonoid and possesses anti-inflammatory, antioxidant, anticarcinogenic and hepatoprotective activities. Recently, it has been reported that the administration of tiliroside significantly inhibited body weight gain and visceral fat accumulation in normal mice. In this study, we evaluated the effects of tiliroside on obesity-induced metabolic disorders in obese-diabetic KK-A(y) mice. In KK-A(y) mice, the administration of tiliroside (100 mg/kg body weight/day) for 21 days failed to suppress body weight gain and visceral fat accumulation. Although tiliroside did not affect oxygen consumption, respiratory exchange ratio was significantly decreased in mice treated with tiliroside. In the analysis of metabolic characteristics, it was shown that plasma insulin, free fatty acid and triglyceride levels were decreased, and plasma adiponectin levels were increased in mice administered tiliroside. The messenger RNA expression levels of hepatic adiponectin receptor (AdipoR)-1 and AdipoR2 and skeletal muscular AdipoR1 were up-regulated by tiliroside treatment. Furthermore, it was indicated that tiliroside treatment activated AMP-activated protein kinase in both the liver and skeletal muscle and peroxisome proliferator-activated receptor α in the liver. Finally, tiliroside inhibited obesity-induced hepatic and muscular triglyceride accumulation. These findings suggest that tiliroside enhances fatty acid oxidation via the enhancement adiponectin signaling associated with the activation of both AMP-activated protein kinase and peroxisome proliferator-activated receptor α and ameliorates obesity-induced metabolic disorders, such as hyperinsulinemia and hyperlipidemia, although it does not suppress body weight gain and visceral fat accumulation in obese-diabetic model mice. 相似文献
98.
Katoh K Kano Y Amano M Onishi H Kaibuchi K Fujiwara K 《The Journal of cell biology》2001,153(3):569-584
It is widely accepted that actin filaments and the conventional double-headed myosin interact to generate force for many types of nonmuscle cell motility, and that this interaction occurs when the myosin regulatory light chain (MLC) is phosphorylated by MLC kinase (MLCK) together with calmodulin and Ca(2+). However, recent studies indicate that Rho-kinase is also involved in regulating the smooth muscle and nonmuscle cell contractility. We have recently isolated reactivatable stress fibers from cultured cells and established them as a model system for actomyosin-based contraction in nonmuscle cells. Here, using isolated stress fibers, we show that Rho-kinase mediates MLC phosphorylation and their contraction in the absence of Ca(2+). More rapid and extensive stress fiber contraction was induced by MLCK than was by Rho-kinase. When the activity of Rho-kinase but not MLCK was inhibited, cells not only lost their stress fibers and focal adhesions but also appeared to lose cytoplasmic tension. Our study suggests that actomyosin-based nonmuscle contractility is regulated by two kinase systems: the Ca(2+)-dependent MLCK and the Rho-kinase systems. We propose that Ca(2+) is used to generate rapid contraction, whereas Rho-kinase plays a major role in maintaining sustained contraction in cells. 相似文献
99.
100.
Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s) responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex) by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis. 相似文献