首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5377篇
  免费   354篇
  国内免费   5篇
  2022年   25篇
  2021年   38篇
  2019年   35篇
  2018年   55篇
  2017年   50篇
  2016年   72篇
  2015年   118篇
  2014年   138篇
  2013年   285篇
  2012年   253篇
  2011年   246篇
  2010年   161篇
  2009年   159篇
  2008年   239篇
  2007年   252篇
  2006年   230篇
  2005年   260篇
  2004年   230篇
  2003年   294篇
  2002年   251篇
  2001年   205篇
  2000年   219篇
  1999年   181篇
  1998年   79篇
  1997年   64篇
  1996年   56篇
  1995年   59篇
  1994年   51篇
  1993年   54篇
  1992年   122篇
  1991年   118篇
  1990年   108篇
  1989年   110篇
  1988年   103篇
  1987年   74篇
  1986年   77篇
  1985年   53篇
  1984年   67篇
  1983年   51篇
  1982年   48篇
  1981年   36篇
  1980年   22篇
  1979年   43篇
  1978年   35篇
  1977年   31篇
  1976年   26篇
  1974年   33篇
  1973年   22篇
  1971年   27篇
  1970年   30篇
排序方式: 共有5736条查询结果,搜索用时 15 毫秒
961.
Central carbon metabolism is a basic and exhaustively analyzed pathway. However, the intrinsic robustness of the pathway might still conceal uncharacterized reactions. To test this hypothesis, we constructed systematic multiple‐knockout mutants involved in central carbon catabolism in Escherichia coli and tested their growth under 12 different nutrient conditions. Differences between in silico predictions and experimental growth indicated that unreported reactions existed within this extensively analyzed metabolic network. These putative reactions were then confirmed by metabolome analysis and in vitro enzymatic assays. Novel reactions regarding the breakdown of sedoheptulose‐7‐phosphate to erythrose‐4‐phosphate and dihydroxyacetone phosphate were observed in transaldolase‐deficient mutants, without any noticeable changes in gene expression. These reactions, triggered by an accumulation of sedoheptulose‐7‐phosphate, were catalyzed by the universally conserved glycolytic enzymes ATP‐dependent phosphofructokinase and aldolase. The emergence of an alternative pathway not requiring any changes in gene expression, but rather relying on the accumulation of an intermediate metabolite may be a novel mechanism mediating the robustness of these metabolic networks.  相似文献   
962.
Botulinum neurotoxins (BoNTs) are often acquired from the digestive tract and specifically target neuromuscular junctions where they cause an inhibition of acetylcholine release. A transcytotic mechanism has been evidenced in epithelial intestinal cells, which delivers whole BoNTs across the intestinal barrier, whereas BoNTs enter motoneurons through a pathway that permits the translocation of light chain into the cytosol. We used fluorescent BoNT/A C-terminal part of H chain (Hc) that mediates toxin binding to cell receptors to monitor toxin entry into NG108-15 neuronal cells as well as into Caco-2 and m-ICcl2 intestinal cells. BoNT/A Hc receptors were found to be distributed in membrane structures closely associated to cholesterol-enriched microdomains, but distinct from detergent-resistant microdomains in both cell types. BoNT/A Hc was trapped into endocytic vesicles, which progressively migrated to a perinuclear area in NG108-15 cells, and in a more scattered manner in intestinal cells. In both cell types, BoNT/A Hc entered through a dynamin- and intersectin-dependent pathway, reached an early endosomal compartment labelled with early endosome antigen 1. In neuronal cells, BoNT/A Hc entered mainly via a clathrin-dependent pathway, in contrast to intestinal cells where it followed a Cdc42-dependent pathway, supporting a differential toxin routing in both cell types.  相似文献   
963.
964.
965.
We quantified the growth behavior of all available single gene deletion strains of budding yeast under ethanol stress. Genome-wide analyses enabled the extraction of the genes and determination of the functional categories required for growth under this condition. Statistical analyses revealed that the growth of 446 deletion strains under stress induced by 8% ethanol was defective. We classified these deleted genes into known functional categories, and found that many were important for growth under ethanol stress including several categories that have not been characterized, such as peroxisome. We also performed genome-wide screening under osmotic stress and identified 329 osmotic-sensitive strains. We excluded these strains from the 446 ethanol-sensitive strains to extract the genes whose deletion caused sensitivity to ethanol-specific (359 genes), osmotic-specific (242 genes), and both stresses (87 genes). We also extracted the functional categories that are specifically important for growth under ethanol stress. The genes and functional categories identified in the analysis might provide clues to improving ethanol stress tolerance among yeast cells.  相似文献   
966.
The efficiency of gene targeting by integration through homologous recombination (homologous integration, HI) in the human pathogen Cryptococcus neoformans remains unsatisfactory. In order to achieve a much more efficient gene targeting system in C. neoformans, a new double knockout strain in genes involved in the non-homologous end joining (NHEJ) pathway was constructed. HI frequency was elevated by as much as approximately fivefold in the single or double knockout strains in NHEJ genes, and the frequency depended on the gene targeted. None of the NHEJ gene knockouts showed significant differences in regular growth, sensitivity to DNA-damaging drugs or UV, and virulence compared to the wild-type control, suggesting that the NHEJ pathway does not play a significant role in these biological stresses in C. neoformans. It was also suggested that the genes analyzed in this study are components of a single NHEJ pathway, as the mutants (including the double mutant) displayed the same phenotypes.  相似文献   
967.
Phototropins 1 and 2 (phot1 and phot2) function as blue light (BL) photoreceptors for phototropism, chloroplast relocation, stomatal opening and leaf flattening in Arabidopsis thaliana. Phototropin consists of two functional domains, the N-terminal photosensory domain and the C-terminal Ser/Thr kinase domain. However, little is known about the signal transduction pathway that links the photoreceptors and the physiological responses downstream of BL perception. To understand the mechanisms by which phot2 initiates these responses, we transformed the phot1phot2 double mutant of Arabidopsis with constructs encoding translationally fused phot2:green fluorescent protein (P2G). P2G was fully functional for the phot2-specific physiological responses in these transgenic plants. It localized strongly to the plasma membrane and weakly to the cytoplasm in the dark. Upon illumination with BL, punctate P2G staining was formed within a few minutes in addition to the constitutive plasma membrane staining. This punctate distribution pattern matched well with that of the Golgi-localized KAM1DeltaC:mRFP. Brefeldin A (BFA), an inhibitor of vesicle trafficking, induced accumulation of P2G around the perinuclear region even in darkness, but the punctate pattern was not observed. After treatment of these cells with BL, P2G exhibited the punctate distribution pattern that matched with that of the Golgi marker. Hence, the light-dependent association of P2G with the Golgi apparatus was BFA-insensitive. A structure/function analysis indicated that the kinase domain was essential for the Golgi localization of phot2. The BL-induced Golgi localization of phot2 may be one of important signaling steps in the phot2 signal transduction pathway.  相似文献   
968.
A stereoselective synthesis of dinucleoside boranophosphates by using nucleoside 3'-oxazaphospholidine derivatives is described. The diastereoselectivity of the internucleotidic bond formation reactions varied with the nucleobase used. (Rp)- and (Sp)-dithymidine boranophosphates were synthesized with excellent diastereoselectivity both in solution and on a solid-support, whereas a loss of diastereopurity was observed for the 2'-deoxycytidine derivative having an unprotected nucleobase amino group. On the other hand, complete chemoselectivity of the 3'-oxazaphospholidine derivatives toward hydroxy groups over amino groups was serendipitously found during the study. This unique chemoselectivity of the 3'-oxazaphospholidine derivatives was investigated by comparing them with the conventional nucleoside 3'-phosphoramidite.  相似文献   
969.
FTY720 (1) is a novel immunosuppressant (immunomodulator), derived from ISP-I (2: myriocin and thermozymocidin). To clarify the pharmacokinetic properties of 1, antibodies against 1 were prepared and a competitive enzyme immunoassay (EIA) was developed. Two kinds of haptens, 3 and 4, for 1 were synthesized and coupled to ovalbumin (OVA). Rabbits were immunized with 3-OVA or 4-OVA, and corresponding antibodies were obtained. Both antibodies recognized the 2-amino-2-(2-phenylethyl)propane-1,3-diol moiety in 1. Using the anti-3-OVA antibody, a competitive EIA for 1 was developed and evaluated. The range of quantification by the EIA was 0.06-10 ng/mL. The application of the EIA has enabled us to measure the FTY720 concentration in serum after oral administration of 1 (1mg/kg) to rats.  相似文献   
970.
Elevated hepatic reactive oxygen species play an important role in pathogenesis of liver diseases, such as alcohol-induced liver injury, hepatitis C virus infection, and nonalcoholic steatohepatitis. In the present study, we investigated and compared the hepatic lipid metabolisms of liver-specific Sod2 (superoxide dismutase 2) knock-out (Sod2 KO), Sod1 knock-out (Sod1 KO), and Sod1/liver-specific Sod2 double knock-out mice (double KO). We observed significant increases in lipid peroxidation and triglyceride (TG) in the liver of Sod1 KO and double KO mice but not in the liver of Sod2 KO mice. We also found that high fat diet enhanced fatty changes of the liver in Sod1 KO and double KO mice but not in Sod2 KO mice. These data indicated that CuZn-SOD deficiency caused lipid accumulation in the liver. To investigate the molecular mechanism of hepatic lipid accumulation in CuZn-SOD-deficient mice, we measured TG secretion rate from liver using Triton WR1339. We found significant decrease of TG secretion in CuZn-SOD-deficient mice. Furthermore, we observed marked degradation of apolipoprotein B (apoB) in the liver and plasma of CuZn-SOD-deficient mice, indicating that degradation of apoB impairs secretion of lipoprotein from the liver. Our data suggest that oxidative stress enhances hepatic lipid accumulation by impaired lipoprotein secretion due to the degradation of apoB in liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号