首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1040篇
  免费   64篇
  国内免费   3篇
  1107篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   12篇
  2015年   16篇
  2014年   20篇
  2013年   68篇
  2012年   40篇
  2011年   34篇
  2010年   28篇
  2009年   32篇
  2008年   45篇
  2007年   73篇
  2006年   44篇
  2005年   69篇
  2004年   72篇
  2003年   91篇
  2002年   67篇
  2001年   35篇
  2000年   36篇
  1999年   20篇
  1998年   27篇
  1997年   19篇
  1996年   16篇
  1995年   20篇
  1994年   21篇
  1993年   12篇
  1992年   23篇
  1991年   12篇
  1990年   10篇
  1989年   8篇
  1988年   9篇
  1987年   7篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1982年   12篇
  1981年   9篇
  1980年   3篇
  1979年   7篇
  1978年   6篇
  1977年   3篇
  1973年   3篇
  1968年   2篇
  1966年   2篇
排序方式: 共有1107条查询结果,搜索用时 0 毫秒
61.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   
62.
A hydrophobic filter paper of a given pore size containing a synthetic lipid, i.e. dioleyl phosphate, was interposed between aqueous electrolyte solutions having the same chemical composition and temperature. The electric capacitance and conductance of the membrane immersed in various concentrations of KCl were measured in the frequency range from 20 to 3 × 106 cycle/sec. The observed capacitance and conductance were found to be strongly dependent on the applied frequency. A theory is proposed to account for this dispersion of impedance observed in the present membrane-electrolyte system. The dispersion is attributed to the formation of bilayer membranes of the lipid inside the filter paper. The effects of the salt concentration, the adsorbed quantity of the lipid, and the pore size of the filter paper on the capacitance and conductance of the membrane are discussed in terms of the distribution function of bilayers formed within the filter paper.  相似文献   
63.
64.
65.
66.
Ten polymorphic microsatellite loci were characterized from two genomic DNA-enriched libraries of the red panda (Ailurus fulgens). The number of observed alleles among 35 samples of red pandas ranged from five to 12. Observed and expected heterozygosities were 0.286–0.971 and 0.443–0.894, and the mean polymorphic information content was 0.712. All loci followed Hardy–Weinberg expectations except Aifu-14 and Aifu-16, which may due to the presence of inbreeding or null alleles. Three pairs of loci exhibited significant linkage disequilibrium after Bonferroni correction for multiple comparisons. These microsatellites would be useful to strengthen population management, genetic diversity exploration, and demographic history speculation of this species.  相似文献   
67.
Indian hedgehog (Ihh) is indispensable for development of the osteoblast lineage in the endochondral skeleton. In order to determine whether Ihh is directly required for osteoblast differentiation, we have genetically manipulated smoothened (Smo), which encodes a transmembrane protein that is essential for transducing all Hedgehog (Hh) signals. Removal of Smo from perichondrial cells by the Cre-LoxP approach prevents formation of a normal bone collar and also abolishes development of the primary spongiosa. Analysis of chimeric embryos composed of wild-type and Smo(n/n) cells indicates that Smo(n/n) cells fail to contribute to osteoblasts in either the bone collar or the primary spongiosa but generate ectopic chondrocytes. In order to assess whether Ihh is sufficient to induce bone formation in vivo, we have analyzed the bone collar in the long bones of embryos in which Ihh was artificially expressed in all chondrocytes by the UAS-GAL4 bigenic system. Although ectopic Ihh does not induce overt ossification along the entire cartilage anlage, it promotes progression of the bone collar toward the epiphysis, suggesting a synergistic effect between ectopic Ihh and endogenous factors such as the bone morphogenetic proteins (BMPs). In keeping with this model, Hh signaling is further found to be required in BMP-induced osteogenesis in cultures of a limb-bud cell line. Taken together, these results demonstrate that Ihh signaling is directly required for the osteoblast lineage in the developing long bones and that Ihh functions in conjunction with other factors such as BMPs to induce osteoblast differentiation. We suggest that Ihh acts in vivo on a potential progenitor cell to promote osteoblast and prevent chondrocyte differentiation.  相似文献   
68.
Central carbon metabolism is a basic and exhaustively analyzed pathway. However, the intrinsic robustness of the pathway might still conceal uncharacterized reactions. To test this hypothesis, we constructed systematic multiple‐knockout mutants involved in central carbon catabolism in Escherichia coli and tested their growth under 12 different nutrient conditions. Differences between in silico predictions and experimental growth indicated that unreported reactions existed within this extensively analyzed metabolic network. These putative reactions were then confirmed by metabolome analysis and in vitro enzymatic assays. Novel reactions regarding the breakdown of sedoheptulose‐7‐phosphate to erythrose‐4‐phosphate and dihydroxyacetone phosphate were observed in transaldolase‐deficient mutants, without any noticeable changes in gene expression. These reactions, triggered by an accumulation of sedoheptulose‐7‐phosphate, were catalyzed by the universally conserved glycolytic enzymes ATP‐dependent phosphofructokinase and aldolase. The emergence of an alternative pathway not requiring any changes in gene expression, but rather relying on the accumulation of an intermediate metabolite may be a novel mechanism mediating the robustness of these metabolic networks.  相似文献   
69.
An NADPH-dependent alpha-keto amide reductase was purified from Saccharomyces cerevisiae. The molecular mass of the native enzyme was estimated to be 33 and 36 kDa by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis, respectively. The purified enzyme showed a reducing activity not only for aromatic alpha-keto amides but also for aliphatic and aromatic alpha-keto esters. The internal sequence of the enzyme was identical with that of a hypothetical protein (ORF YDL 124w) coded by yeast chromosome IV.  相似文献   
70.
Catch-up weight gain after malnutrition is a risk factor for metabolic syndrome. Here we show that social isolation enhanced fasting-induced weight loss and suppressed weight gain induced by re-feeding for 6 days following a 24-h fast in prepubertal wild-type mice. These effects of social isolation on weight gain were not associated with significant changes in daily average food consumption. Under the same housing condition, genetic deletion of β-endorphin reduced the fasting-induced weight loss and enhanced the re-feeding-induced weight gain in prepubertal mice. These effects of social isolation or genetic deletion of β-endorphin on these weight changes were attenuated and reversed in postpubertal mice. Moreover, genetic deletion of β-endorphin attenuated these effects of social isolation on the catch-up weight gain in prepubertal mice and reversed them in postpubertal mice. Thus, social isolation, endogenous β-endorphin, and age can be novel modulators for body weight changes induced by fasting and re-feeding in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号