首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   32篇
  国内免费   2篇
  591篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   3篇
  2015年   10篇
  2014年   12篇
  2013年   43篇
  2012年   26篇
  2011年   22篇
  2010年   24篇
  2009年   17篇
  2008年   22篇
  2007年   44篇
  2006年   24篇
  2005年   39篇
  2004年   46篇
  2003年   58篇
  2002年   45篇
  2001年   14篇
  2000年   9篇
  1999年   8篇
  1998年   16篇
  1997年   11篇
  1996年   9篇
  1995年   9篇
  1994年   7篇
  1993年   8篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   8篇
  1981年   5篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1957年   1篇
排序方式: 共有591条查询结果,搜索用时 15 毫秒
81.
Enzymes catalyzing the conversion of organohalogen compounds are useful in the chemical industry and environmental technology. Here we report the occurrence of a new reduced flavin adenine dinucleotide (FAD) (FADH2)-dependent enzyme that catalyzes the removal of a halogen atom from an unsaturated aliphatic organohalogen compound by the addition of a water molecule to the substrate. A soil bacterium, Pseudomonas sp. strain YL, inducibly produced a protein named Caa67YL when the cells were grown on 2-chloroacrylate (2-CAA). The caa67YL gene encoded a protein of 547 amino acid residues (Mr of 59,301), which shared weak but significant sequence similarity with various flavoenzymes and contained a nucleotide-binding motif. We found that 2-CAA is converted into pyruvate when the reaction was carried out with purified Caa67YL in the presence of FAD and a reducing agent [NAD(P)H or sodium dithionite] under anaerobic conditions. The reducing agent was not stoichiometrically consumed during this reaction, suggesting that FADH2 is conserved by regeneration in the catalytic cycle. When the reaction was carried out in the presence of H218O, [18O]pyruvate was produced. These results indicate that Caa67YL catalyzes the hydration of 2-CAA to form 2-chloro-2-hydroxypropionate, which is chemically unstable and probably spontaneously dechlorinated to form pyruvate. 2-Bromoacrylate, but not other 2-CAA analogs such as acrylate and methacrylate, served as the substrate of Caa67YL. Thus, we named this new enzyme 2-haloacrylate hydratase. The enzyme is very unusual in that it requires the reduced form of FAD for hydration, which involves no net change in the redox state of the coenzyme or substrate.Dehalogenases catalyze the removal of halogen atoms from organohalogen compounds. These enzymes have been attracting a great deal of attention partly because of their possible applications to the chemical industry and environmental technology. Several dehalogenases have been discovered and characterized (6, 11, 14, 17, 22). Some of them act on unsaturated aliphatic organohalogen compounds in which a halogen atom is bound to an sp2-hybridized carbon atom. Examples include various corrinoid/iron-sulfur cluster-containing reductive dehalogenases (1, 7), cis- and trans-3-chloroacrylic acid dehalogenases (4, 19), and LinF (maleylacetate reductase), which acts on 2-chloromaleylacetate (5).In order to gain more insight into the enzymatic dehalogenation of unsaturated aliphatic organohalogen compounds, we searched for microorganisms that dissimilate 2-chloroacrylate (2-CAA) as a sole source of carbon and energy (8). 2-CAA is a bacterial metabolite of 2-chloroallyl alcohol, an intermediate or by-product in the industrial synthesis of herbicides (26). Rats treated orally with the herbicides sulfallate, diallate, and triallate excrete urinary 2-CAA (16). Various halogenated acrylic acids are produced by a red alga (27). We obtained three 2-CAA-utilizing bacteria as a result of screening (8). For one of these bacteria, Burkholderia sp. strain WS, we previously discovered a new NADPH-dependent enzyme, 2-haloacrylate reductase (12, 13). Although this enzyme does not directly remove a halogen atom from the substrate, it is supposed to participate in the metabolism of 2-CAA by catalyzing the conversion of 2-CAA into l-2-chloropropionate, which is subsequently dehalogenated by l-2-haloacid dehalogenase.Another bacterium that we obtained, Pseudomonas sp. strain YL, also dissimilates 2-CAA. However, the metabolic fate of 2-CAA in this bacterium remains unclear. In the present study, we analyzed proteins from 2-CAA- and lactate-grown cells of Pseudomonas sp. YL by two-dimensional polyacrylamide gel electrophoresis (PAGE) and identified a 2-CAA-inducible protein. We found that the protein catalyzes the dehalogenation of 2-CAA by the addition of a water molecule to the substrate, representing a new family of dehalogenases that act on unsaturated aliphatic organohalogen compounds. Remarkably, the enzyme requires reduced flavin adenine dinucleotide (FAD) (FADH2) for its activity, although the reaction does not involve a net change in the redox state of the coenzyme or substrate. Here we describe the occurrence and characteristics of this unusual flavoenzyme.  相似文献   
82.
83.
We report new results from the re-analysis of 672 complete mitochondrial (mtDNA) genomes of unrelated Japanese individuals stratified into seven equal sized groups by the phenotypes: diabetic patients, diabetic patients with severe angiopathy, healthy non-obese young males, obese young males, patients with Alzheimer’s disease, patients with Parkinson’s disease and centenarians. Each phenotype had 96 samples over 27 known haplogroups: A, B4a, B4b, B4c, B*, B5, D*, F1, F2, M*, M7a, M7b, M8, M9, D4a, D4b1, D4b2, D4d, D4e, D4g, D4h, D5, G, Z, M*, N9a, and N9b. A t-test comparing the fraction of samples in a haplogroup to healthy young males showed a significant enrichment of haplogroups D4a, D5, and D4b2 in centenarians. The D4b2 enrichment was limited to a subgroup of 40 of 61 samples which had the synonymous mutation 9296C > T. We identified this cluster as a distinct haplogroup and labeled it as D4b2b. Using an exhaustive procedure, we constructed the complete list of “mutation patterns” for centenarians and showed that the most significant patterns were in D4a, D5, and D4b2b. We argue that if a selection for longevity appeared only once, it was probably an autosomal event which could be dated to after the appearance of the D mega-group but before the coalescent time of D4a, D5, and D4b2b. Using a simple procedure, we estimated that this event occurred 24.4 ± 0.9 kYBP. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Gabriela Alexe and Noriyuki Fuku are joint first authors.  相似文献   
84.
Abstract: Reactive gliosis, which occurs in response to damage to the central nervous system, has been recognized for years but is not yet understood. We describe here a tissue culture model of reactive astrocytes used to characterize their properties. Cultures are prepared 1 week following 6-hydroxydopamine (6-OHDA) lesion of rat substantia nigra and compared with astrocytes cultured from normal adult rats or rats injected with saline only. Astrocytes from the 6-OHDA-lesioned side contained elevated levels of glial fibrillary acidic protein (GFAP) and GFAP mRNA and were intensely immunoreactive for GFAP, vimentin, and two epitopes that in vivo are found only on reactive astrocytes. The basal content of nerve growth factor (NGF) mRNA and NGF in astrocytes from 6-OHDA-lesioned rats was significantly higher relative to control astrocytes. Two inflammatory cytokines, interleukin-1β and interferon-γ, increased synthesis of NGF up to 20-fold in the reactive cells, whereas there was no response in the normal adult astrocytes. Astrocytes from postnatal day 2 rats shared many of the properties of the reactive adult astrocytes. These cultures offer the possibility to characterize the cellular and molecular properties of reactive astrocytes and to determine the factors responsible for activation of astrocytes.  相似文献   
85.
Hippocampal mossy fibers (MFs), axons of dentate granule cells, run through a narrow strip, called the stratum lucidum, and make synaptic contacts with CA3 pyramidal cells. This stereotyped pathfinding is assumed to require a tightly controlled guidance system, but the responsible mechanisms have not been proven directly. To clarify the cellular basis for the MF pathfinding, microslices of the dentate gyrus (DG) and Ammon's horn (AH) were topographically arranged in an organotypic explant coculture system. When collagen gels were interposed between DG and AH slices prepared from postnatal day 6 (P6) rats, the MFs passed across this intervening gap and reached CA3 stratum lucidum. Even when the recipient AH was chemically pre-fixed with paraformaldehyde, the axons were still capable of accessing their normal target area only if the DG and AH slices were directly juxtaposed without a collagen bridge. The data imply that diffusible and contact cues are both involved in MF guidance. To determine how these different cues contribute to MF pathfinding during development, a P6 DG slice was apposed simultaneously to two AH slices prepared from P0 and P13 rats. MFs projected normally to both the host slices, whereas they rarely invaded P0 AH when the two hosts were fixed. Early in development, therefore, the MFs are guided mainly by a chemoattractant gradient, and thereafter, they can find their trajectories by a contact factor, probably via fasciculation with pre-established MFs. The present study proposes a dynamic paradigm in CNS axon pathfinding, that is, developmental changes in axon guidance cues.  相似文献   
86.
CNR/Pcdhalpha family proteins have been first identified as a receptor family that corporate with Fyn, a family of the Src family of tyrosine kinase, and known as synaptic cadherins. Here we report the complete genomic sequence and organization of the chicken (Gallus gallus) CNR/Pcdhalpha The total length of chicken CNR/Pcdhalpha is 177kb. The chicken CNR/Pcdhalpha cluster encodes 12 variable and 3 constant exons. The genomic organizations of the chicken, rat, mouse, and human CNR/Pcdhalpha are basically orthologous. The constant-region exons (CP1, CP2, and CP3) are highly conserved between chicken and mammals, with percent identities of 90.9%, 90.7%, and 91.8% at the amino-acid level for chicken versus rat, mouse, and human, respectively. In contrast, the percent identities of the variable-region exons between chicken and mammals were lower: 51.8%, 51.3%, and 52.7%, on average, for chicken versus rat, mouse, and human, respectively, at the amino-acid level. Moreover, the chicken variable-region exons (from v1 to v12) are highly conserved paralogously (91.4%: nucleic acid, 92.4%: amino acid) in comparison with those of mammals. The CG content of each variable exon in the chicken (v1 to v12) is 74% on average and the CpG dinucleotide frequency in each variable-region exon is twice that of mammals. Due to the high CG content, chicken variable exons (from v1 to v12) encode 3 to 4 frame-shifted open reading frames, which span 1.5-3.0kb, in both the sense and anti-sense orientations.  相似文献   
87.
Cytokinins and auxins are major phytohormones involved in various aspects of plant growth and development. These phytohormones are also known to antagonize the effects of abscisic acid (ABA) on stomatal movement, and to affect ethylene biosynthesis. As ethylene has an antagonistic effect on ABA-induced stomatal closure, the possibility that the antagonistic effects of these phytohormones on ABA were mediated through ethylene biosynthesis was investigated. Both the cytokinin, 6-benzyladenine (BA), and the auxin, 1-naphthaleneacetic acid (NAA), antagonized ABA-induced stomatal closure in a manner similar to that following application of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). However, these effects were negated when ethylene signalling, perception, or biosynthesis were blocked. As stomatal aperture is regulated by changes in guard cell volume, ABA application was found to reduce the volume of the guard cell protoplasts (GCP). It was found that BA, NAA, or ACC application compensated perfectly for the reduction in GCP volume by ABA application in WT plants. The above observations suggest that cytokinins and auxins inhibit ABA-induced stomatal closure through the modulation of ethylene biosynthesis, and that ethylene inhibits the ABA-induced reduction of osmotic pressure in the guard cells.  相似文献   
88.
The Genji firefly, Luciola cruciata, is divided into two ecological types, the fast-flash and slow-flash types, on the basis of the interflash interval of mate-seeking males. To evaluate the evolutionary origin of the two types, 62 populations were examined by restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase (CO) II gene. As a result, 19 haplotypes were detected, and their distributions were indigenous to local areas. Phylogenetic trees constructed from sequence comparison of the haplotypes revealed three major clades (I, II, and III). The boundary of haplotypes between clades I and II is approximately concordant with the geological structure of the Japanese Islands, which is a great rupture zone called the Fossa Magna, and the distribution of haplotypes in clades III and I-II corresponds to the Kyushu and Honshu-Shikoku Islands, respectively. The results suggest a vicariant scenario in which current L. cruciata diversity would have arisen from phylogenetic separations subsequent to the formation process of the Japanese Islands based on the molecular clock. The CO II gene trees also suggested that the fast-flash type should be considered an ancestral form, while the slow-flash type would be a derived one. The divergence time between the slow- and the fast-flash types is estimated to be about 4.6 to 2.0 mya (the Pliocene epoch).  相似文献   
89.
Plant-cultured cells of Catharanthus roseus converted trans-resveratrol into its 3-O-β-D-glucopyranoside, 4'-O-β-D-glucopyranoside, 3-O-(6-O-β-D-xylopyranosyl)-β-D-glucopyranoside, and 3-O-(6-O-α-L-arabinopyranosyl)-β-D-glucopyranoside. The 3-O-(6-O-β-D-xylopyranosyl)-β-D-glucopyranoside and 3-O-(6-O-α-L-arabinopyranosyl)-β-D-glucopyranoside compounds of trans-resveratrol are both new. Incubation of plant-cultured cells of Ipomoea batatas and Strophanthus gratus with trans-resveratrol gave trans-resveratrol 3-O-β-D-glucopyranoside and trans-resveratrol 4'-O-β-D-glucopyranoside.  相似文献   
90.
Photosystem II is vulnerable to various abiotic stresses such as strong visible light and heat. Under both stresses, the damage seems to be triggered by reactive oxygen species, and the most critical damage occurs in the reaction center-binding D1 protein. Recent progress has been made in identifying the protease involved in the degradation of the photo- or heat-damaged D1 protein, the ATP-dependent metalloprotease FtsH. Another important result has been the discovery that the damaged D1 protein aggregates with nearby polypeptides such as the D2 protein and the antenna chlorophyll-binding protein CP43. The degradation and aggregation of the D1 protein occur simultaneously, but the relationship between the two is not known. We suggest that phosphorylation and dephosphorylation of the D1 protein, as well as the binding of the extrinsic PsbO protein to Photosystem II, play regulatory roles in directing the damaged D1 protein to the two alternative pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号