首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   43篇
  国内免费   2篇
  2024年   2篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   6篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   13篇
  2014年   27篇
  2013年   50篇
  2012年   33篇
  2011年   36篇
  2010年   36篇
  2009年   25篇
  2008年   30篇
  2007年   58篇
  2006年   36篇
  2005年   50篇
  2004年   56篇
  2003年   70篇
  2002年   56篇
  2001年   22篇
  2000年   22篇
  1999年   16篇
  1998年   21篇
  1997年   16篇
  1996年   10篇
  1995年   12篇
  1994年   6篇
  1993年   10篇
  1992年   10篇
  1991年   6篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有805条查询结果,搜索用时 31 毫秒
71.
The mouse homeobox gene Otx2 plays essential roles at each step and in every tissue during head development. We have previously identified a series of enhancers that are responsible for driving the Otx2 expression in these contexts. Among them the AN enhancer, existing 92 kb 5' upstream, directs Otx2 expression in anterior neuroectoderm (AN) at the headfold stage. Analysis of the enhancer mutant Otx2(DeltaAN/-) indicated that Otx2 expression under the control of this enhancer is essential to the development of AN. This study demonstrates that the AN enhancer is promoter-dependent and regulated by acetylated YY1. YY1 binds to both the AN enhancer and promoter region. YY1 is acetylated in the anterior head, and only acetylated YY1 can bind to the sequence in the enhancer. Moreover, YY1 binding to both of these two sites is essential to Otx2 expression in AN. These YY1 binding sites are highly conserved in AN enhancers in tetrapods, coelacanth and skate, suggesting that establishment of the YY1 regulation coincides with that of OTX2 function in AN development in an ancestral gnathostome.  相似文献   
72.
Translation of nonSTOP mRNA is repressed post-initiation in mammalian cells   总被引:1,自引:0,他引:1  
We investigated the fate of aberrant mRNAs lacking in-frame termination codons (called nonSTOP mRNA) in mammalian cells. We found that translation of nonSTOP mRNA was considerably repressed although a corresponding reduction of mRNA was not observed. The repression appears to be post-initiation since (i) repressed nonSTOP mRNAs were associated with polysomes, (ii) translation of IRES-initiated and uncapped nonSTOP mRNA were repressed, and (iii) protein production from nonSTOP mRNA associating with polysomes was significantly reduced when used to program an in vitro run-off translation assay. NonSTOP mRNAs distributed into lighter polysome fractions compared to control mRNAs encoding a stop codon, and a significant amount of heterogeneous polypeptides were produced during in vitro translation of nonSTOP RNAs, suggesting premature termination of ribosomes translating nonSTOP mRNA. Moreover, a run-off translation assay using hippuristanol and RNAse protection assays suggested the presence of a ribosome stalled at the 3' end of nonSTOP mRNAs. Taken together, these data indicate that ribosome stalling at the 3' end of nonSTOP mRNAs can block translation by preventing upstream translation events.  相似文献   
73.
We report new results from the re-analysis of 672 complete mitochondrial (mtDNA) genomes of unrelated Japanese individuals stratified into seven equal sized groups by the phenotypes: diabetic patients, diabetic patients with severe angiopathy, healthy non-obese young males, obese young males, patients with Alzheimer’s disease, patients with Parkinson’s disease and centenarians. Each phenotype had 96 samples over 27 known haplogroups: A, B4a, B4b, B4c, B*, B5, D*, F1, F2, M*, M7a, M7b, M8, M9, D4a, D4b1, D4b2, D4d, D4e, D4g, D4h, D5, G, Z, M*, N9a, and N9b. A t-test comparing the fraction of samples in a haplogroup to healthy young males showed a significant enrichment of haplogroups D4a, D5, and D4b2 in centenarians. The D4b2 enrichment was limited to a subgroup of 40 of 61 samples which had the synonymous mutation 9296C > T. We identified this cluster as a distinct haplogroup and labeled it as D4b2b. Using an exhaustive procedure, we constructed the complete list of “mutation patterns” for centenarians and showed that the most significant patterns were in D4a, D5, and D4b2b. We argue that if a selection for longevity appeared only once, it was probably an autosomal event which could be dated to after the appearance of the D mega-group but before the coalescent time of D4a, D5, and D4b2b. Using a simple procedure, we estimated that this event occurred 24.4 ± 0.9 kYBP. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Gabriela Alexe and Noriyuki Fuku are joint first authors.  相似文献   
74.
Isolates of Pyricularia grisea from wheat (Triticum aestivum Lam.) and triticale (x Triticosecale Wittmack) spikes with blast symptoms were analyzed by classical (VCG) and molecular (RAPD) techniques. P. grisea mutants, unable to use sodium nitrate (nit) as nitrogen source, were obtained with potassium chlorate. For vegetative compatibility (VCG) tests, genetically complementary nit mutant pairs were inoculated in a medium with sodium nitrate as a single nitrogen source. P. grisea isolates were divided into two vegetative compatibility groups and two RAPD groups. Since vegetative compatible strains may mutually exchange genetic and cytoplasmatic material, the contribution of the parasexual cycle in the genetic variability of Brazilian P. grisea isolates is discussed.  相似文献   
75.
In rice (Oryza sativa) and Arabidopsis thaliana, gibberellin (GA) signaling is mediated by GIBBERELLIN-INSENSITIVE DWARF1 (GID1) and DELLA proteins in collaboration with a GA-specific F-box protein. To explore when plants evolved the ability to perceive GA by the GID1/DELLA pathway, we examined these GA signaling components in the lycophyte Selaginella moellendorffii and the bryophyte Physcomitrella patens. An in silico search identified several homologs of GID1, DELLA, and GID2, a GA-specific F-box protein in rice, in both species. Sm GID1a and Sm GID1b, GID1 proteins from S. moellendorffii, showed GA binding activity in vitro and interacted with DELLA proteins from S. moellendorffii in a GA-dependent manner in yeast. Introduction of constitutively expressed Sm GID1a, Sm G1D1b, and Sm GID2a transgenes rescued the dwarf phenotype of rice gid1 and gid2 mutants. Furthermore, treatment with GA(4), a major GA in S. moellendorffii, caused downregulation of Sm GID1b, Sm GA20 oxidase, and Sm GA3 oxidase and degradation of the Sm DELLA1 protein. These results demonstrate that the homologs of GID1, DELLA, and GID2 work in a similar manner in S. moellendorffii and in flowering plants. Biochemical studies revealed that Sm GID1s have different GA binding properties from GID1s in flowering plants. No evidence was found for the functional conservation of these genes in P. patens, indicating that GID1/DELLA-mediated GA signaling, if present, differs from that in vascular plants. Our results suggest that GID1/DELLA-mediated GA signaling appeared after the divergence of vascular plants from the moss lineage.  相似文献   
76.
Evolution of the genome size in eukaryotes is often affected by changes in the noncoding sequences, for which insertions and deletions (indels) of small nucleotide sequences and amplification of repetitive elements are considered responsible. In this study, we compared the genomic DNA sequences of two kinds of fish, medaka (Oryzias latipes) and fugu (Takifugu rubripes), which show two-fold difference in the genome size (800 Mb vs. 400 Mb). We selected a contiguous DNA sequence of 790 kb from the medaka chromosome LG22 (linkage group 22), and made a precise comparison with the sequence (387 kb) of the corresponding region of Takifugu. The sequence of 178 kb in total was aligned common between two fishes, and the remaining sequences (612 kb for medaka and 209 kb for fugu) were found abundant in various repetitive elements including many types of unclassified low copy repeats, all of which accounted for more than a half (54%) of the genome size difference. Furthermore, we identified a significant difference in the length ratio of the unaligned sequences that locate between the aligned sequences (USBAS), particularly after eliminating known repetitive elements. These USBAS with no repetitive elements (USBAS-nr) located within the intron and intergenic region. These results strongly indicated that amplification of repetitive elements and compilation of indels are major driving forces to facilitate changes in the genome size.  相似文献   
77.
Li X  Ogoh K  Ohba N  Liang X  Ohmiya Y 《Gene》2007,392(1-2):196-205
We determined the mitochondrial DNA (mtDNA) sequences of two luminous beetles (Arthropoda, Insecta, Coleoptera), Rhagophthalmus lufengensis from Yunnan, China and Rhagophthalmus ohbai from Yaeyama Island, Japan. We identified all the 37 mtDNA genes of R. lufengensis (15,982 bp) and the 34 genes of R. ohbai (15,704 bp). R. lufengensis and R. ohbai genomes have higher A + T contents than other coleopteran genomes although the gene arrangements are similar. Interestingly, in a study of the evolutionary relationship among R. lufengensis, R. ohbai and the firefly Pyrocoelia rufa, the phylogenetic tree inferred from lrRNA genes from mitochondrial genomes indicates a biogeographic relationship among the bioluminescent insects in East Asia and the phylogenetic tree inferred from luciferase-related genes from nuclear genomes shows an appropriate relationship among coleopterans, reflecting the evolutionary origin of bioluminescence. Thus, the mtDNAs of luminescent beetles can provide an insight into their evolutionary origin and biogeography.  相似文献   
78.
Yang H  Sasaki T  Minoshima S  Shimizu N 《Genomics》2007,90(2):249-260
We report a novel protein family consisting of three members, each of which contains RUN and TBC motifs and appears to be associated with small G protein-mediated signal transduction pathway. We named these proteins as small G protein signaling modulators (SGSM1/2/3). Northern blot analysis revealed that human SGSM2/3 are expressed ubiquitously in various tissues, whereas SGSM1 is expressed mainly in brain, heart, and testis. Mouse possessed the same protein family genes, and the in situ hybridization and immunohistochemical staining of tissue sections revealed that mouse Sgsm1/2/3 are expressed in the neurons of central nervous system, indicating the strong association of Sgsm family with neuronal function. Furthermore, endogenous Sgsm1 protein was localized in the trans-Golgi network of mouse Neuro2a cells by immunofluorescence microscopy. Expression of various cDNA constructs followed by immunoprecipitation assay revealed that human SGSM1/2/3 proteins are coprecipitated with RAP and RAB subfamily members of the small G protein superfamily. Based on these results, we postulated that the SGSM family members function as modulators of the small G protein RAP and RAB-mediated neuronal signal transduction and vesicular transportation pathways.  相似文献   
79.
80.
The larvicidal activity against Culex pipiens of all stereoisomers of dihydroguaiaretic acid (DGA) and secoisolariciresinol was measured, and these DGAs were found to be potent. Sixteen (-)-DGA derivatives were then newly synthesized to analyze their structure-activity relationship. Two derivatives monohydroxylated at the 3- or 4-position of the 7-phenyl group of DGA induced acute paralytic activity in the mosquitoes. Derivatives with several hydroxyl groups had lower activity than the natural compound, suggesting that hydrophobicity was probably an important factor for their insecticidal activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号