首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   758篇
  免费   43篇
  国内免费   2篇
  2024年   1篇
  2023年   1篇
  2021年   6篇
  2020年   3篇
  2019年   6篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   13篇
  2014年   27篇
  2013年   50篇
  2012年   33篇
  2011年   36篇
  2010年   36篇
  2009年   25篇
  2008年   30篇
  2007年   58篇
  2006年   36篇
  2005年   50篇
  2004年   56篇
  2003年   70篇
  2002年   56篇
  2001年   22篇
  2000年   22篇
  1999年   16篇
  1998年   21篇
  1997年   16篇
  1996年   10篇
  1995年   12篇
  1994年   6篇
  1993年   10篇
  1992年   10篇
  1991年   6篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有803条查询结果,搜索用时 515 毫秒
51.
The zebrafish no tail gene (ntl) is indispensable for the formation of the notochord and the tail structure. Here we showed that de novo DNA methylation occurred at the CpG island of ntl. The methylation started at the segmentation stage and continued after the larval stage. However, it occurred predominantly between 14 and 48 h postfertilization, which overlaps the period in which ntl expression disappears in the notochord and the tailbud. This inverse correlation, together with the methylation-associated formation of an inaccessible chromatin structure at the ntl CpG island region, suggested the involvement of the de novo methylation in ntl repression. Since no changes in methylation patterns were observed at the CpG islands of four other zebrafish genes, there must be a mechanism in zebrafish for specific methylation of the ntl CpG island.  相似文献   
52.
Recent progress in plant molecular genetics has revealed that floral organ development is regulated by several homeotic selector genes, most of which belong to the MADS-box gene family. Here we report on SrMADS1,a MIKC(c)-type MADS-box gene from Selaginella, a spikemoss belonging to the lycophytes. SrMADS1 phylogenetically forms a monophyletic clade with genes of the LAMB2 group, which are MIKC(c) genes of the clubmoss Lycopodium, and is expressed in whole sporophytic tissues except roots and rhizophores. Our results and the previous report on Lycopodium MIKC(c) genes suggest that the ancestral MIKC(c )gene of primitive dichotomous plants in the early Devonian was involved in the development of basic sporophytic tissues such as shoot, stem, and sporangium.  相似文献   
53.
Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.  相似文献   
54.
The activities to induce TNF-alpha production by a monocytic cell line, THP-1, and ICAM-1 expression and IL-6 production by human gingival fibroblasts were detected in plural membrane lipoproteins of Mycoplasma salivarium. Although SDS-PAGE of the lipoproteins digested by proteinase K did not reveal any protein bands with molecular masses higher than approximately10 kDa, these activities were detected in the front of the gel. A lipoprotein with a molecular mass of 44 kDa (Lp44) was purified. Proteinase K did not affect the ICAM-1 expression-inducing activity of Lp44, but lipoprotein lipase abrogated the activity. These results suggested that the proteinase K-resistant and low molecular mass entity, possibly the N-terminal lipid moiety, played a key role in the expression of the activity. The N-terminal lipid moiety of Lp44 was purified from Lp44 digested with proteinase K by HPLC. Judging from the structure of microbial lipopeptides as well as the amino acid sequence and infrared spectrum of Lp44, the structure of the N-terminal lipid moiety of Lp44 was speculated to be S-(2, 3-bisacyloxypropyl)-cysteine-GDPKHPKSFTEWV-. Its analogue, S-(2, 3-bispalmitoyloxypropyl)-cysteine-GDPKHPKSF, was synthesized. The lipopeptide was similar to the N-terminal lipid moiety of Lp44 in the infrared spectrum and the ICAM-1 expression-inducing activity. Thus, this study suggested that the active entity of Lp44 was its N-terminal lipopeptide moiety, the structure of which was very similar to S-(2, 3-bispalmitoyloxypropyl)-cysteine-GDPKHPKSF.  相似文献   
55.
56.
The teleost dorsoventral axis cannot be morphologically distinguished before gastrulation. Previous studies by the current authors have shown that localized dorsalizing activity in the yolk cell (YC) induces the dorsal tissues in the overlying blastoderm. In order to examine whether or not dorsal blastomeres are committed to their dorsal fate before the gastrula stage, a variety of transplant operations were performed in goldfish blastoderms at the mid- to late-blastula stages. When the blastoderm was cut from the YC, rotated horizontally at 180°, and recombined with the YC, the blastoderm frequently developed two axes, indicating that dorsal blastomeres of the blastula had already acquired the ability to differentiate into the organizer in the absence of dorsalizing signals from the YC. This result was further confirmed by experiments using ventralized embryos in which no dorsal structures formed: the axis formation was frequently observed in the normal blastoderm combined with the ventralized YC at the blastula stage. However, the axes formed in the absence of dorsal information from the YC exhibited a lower dorso-anterior index. Furthermore, the dorsal specification was not stably maintained when the dorsal cells were located far from the YC. These results suggest that the inductive and permissive influence of the YC may be required for the blastoderm to undergo full dorsal differentiation.  相似文献   
57.
Extracellular vesicles (EVs) including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker) antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG) isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker) antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.  相似文献   
58.
The metabolism of Gluconacetobacter oboediens was investigated in relation to different carbon sources for the continuous cultures at the dilution rate of 0.05 h−1. The 13C-flux result implies the formation of metabolic recycles for the case of using glucose and acetate as carbon sources. When glucose and ethanol were used as carbon sources, the specific ethanol uptake rate and the specific acetate production rate increased as the feed ethanol concentration was increased from 40 to 60 g/l, while the specific CO2 production rate and the biomass concentration decreased, where the 13C-metabolic flux result indicates that the glycolysis, oxidative PP pathway, and the tricarboxylic acid (TCA) cycle were less active, resulting in less biomass concentration. The flux result also implies that oxaloacetate decarboxylase flux became negative, so that oxaloacetate is backed up by this pathway, resulting in less activity of glyoxylate pathway. When gluconate was added for the case of using glucose and ethanol as carbon sources, the acetate and cell concentrations as well as gluconate concentrations increased. The glucose and ethanol concentrations decreased concomitantly with the increased feed gluconate concentration. In accordance with these fermentation characteristics, the enzyme activity result indicates that glucose dehydrogenase and glucose-6-phosphate dehydrogenase pathways became less active, while the glycolysis and the TCA cycle was activated as the feed gluconate concentration was increased.  相似文献   
59.
In mammalian spermiogenesis, sperm mature during epididymal transit to get fertility. The pig sharing many physiological similarities with humans is considered a promising animal model in medicine. We examined the expression profiles of proteins from boar epididymal caput, corpus, and cauda sperm by two-dimensional gel electrophoresis and peptide mass fingerprinting. Our results indicated that protein disulfide isomerase-P5 (PDI-P5) human homolog was down-regulated from the epididymal corpus to cauda sperm, in contrast to the constant expression of protein disulfide isomerase A3 (PDIA3) human homolog. To examine the functions of PDIA3 and PDI-P5, we cloned and sequenced cDNAs of pig PDIA3 and PDI-P5 protein precursors. Each recombinant pig mature PDIA3 and PDI-P5 expressed in Escherichia coli showed thiol-dependent disulfide reductase activities in insulin turbidity assay. Although PDIA3 showed chaperone activity to promote oxidative refolding of reduced denatured lysozyme, PDI-P5 exhibited anti-chaperone activity to inhibit oxidative refolding of lysozyme at an equimolar ratio. SDS-PAGE and Western blotting analysis suggested that disulfide cross-linked and non-productively folded lysozyme was responsible for the anti-chaperone activity of PDI-P5. These results provide a molecular basis and insights into the physiological roles of PDIA3 and PDI-P5 in sperm maturation and fertilization.  相似文献   
60.
Enzymes catalyzing the conversion of organohalogen compounds are useful in the chemical industry and environmental technology. Here we report the occurrence of a new reduced flavin adenine dinucleotide (FAD) (FADH2)-dependent enzyme that catalyzes the removal of a halogen atom from an unsaturated aliphatic organohalogen compound by the addition of a water molecule to the substrate. A soil bacterium, Pseudomonas sp. strain YL, inducibly produced a protein named Caa67YL when the cells were grown on 2-chloroacrylate (2-CAA). The caa67YL gene encoded a protein of 547 amino acid residues (Mr of 59,301), which shared weak but significant sequence similarity with various flavoenzymes and contained a nucleotide-binding motif. We found that 2-CAA is converted into pyruvate when the reaction was carried out with purified Caa67YL in the presence of FAD and a reducing agent [NAD(P)H or sodium dithionite] under anaerobic conditions. The reducing agent was not stoichiometrically consumed during this reaction, suggesting that FADH2 is conserved by regeneration in the catalytic cycle. When the reaction was carried out in the presence of H218O, [18O]pyruvate was produced. These results indicate that Caa67YL catalyzes the hydration of 2-CAA to form 2-chloro-2-hydroxypropionate, which is chemically unstable and probably spontaneously dechlorinated to form pyruvate. 2-Bromoacrylate, but not other 2-CAA analogs such as acrylate and methacrylate, served as the substrate of Caa67YL. Thus, we named this new enzyme 2-haloacrylate hydratase. The enzyme is very unusual in that it requires the reduced form of FAD for hydration, which involves no net change in the redox state of the coenzyme or substrate.Dehalogenases catalyze the removal of halogen atoms from organohalogen compounds. These enzymes have been attracting a great deal of attention partly because of their possible applications to the chemical industry and environmental technology. Several dehalogenases have been discovered and characterized (6, 11, 14, 17, 22). Some of them act on unsaturated aliphatic organohalogen compounds in which a halogen atom is bound to an sp2-hybridized carbon atom. Examples include various corrinoid/iron-sulfur cluster-containing reductive dehalogenases (1, 7), cis- and trans-3-chloroacrylic acid dehalogenases (4, 19), and LinF (maleylacetate reductase), which acts on 2-chloromaleylacetate (5).In order to gain more insight into the enzymatic dehalogenation of unsaturated aliphatic organohalogen compounds, we searched for microorganisms that dissimilate 2-chloroacrylate (2-CAA) as a sole source of carbon and energy (8). 2-CAA is a bacterial metabolite of 2-chloroallyl alcohol, an intermediate or by-product in the industrial synthesis of herbicides (26). Rats treated orally with the herbicides sulfallate, diallate, and triallate excrete urinary 2-CAA (16). Various halogenated acrylic acids are produced by a red alga (27). We obtained three 2-CAA-utilizing bacteria as a result of screening (8). For one of these bacteria, Burkholderia sp. strain WS, we previously discovered a new NADPH-dependent enzyme, 2-haloacrylate reductase (12, 13). Although this enzyme does not directly remove a halogen atom from the substrate, it is supposed to participate in the metabolism of 2-CAA by catalyzing the conversion of 2-CAA into l-2-chloropropionate, which is subsequently dehalogenated by l-2-haloacid dehalogenase.Another bacterium that we obtained, Pseudomonas sp. strain YL, also dissimilates 2-CAA. However, the metabolic fate of 2-CAA in this bacterium remains unclear. In the present study, we analyzed proteins from 2-CAA- and lactate-grown cells of Pseudomonas sp. YL by two-dimensional polyacrylamide gel electrophoresis (PAGE) and identified a 2-CAA-inducible protein. We found that the protein catalyzes the dehalogenation of 2-CAA by the addition of a water molecule to the substrate, representing a new family of dehalogenases that act on unsaturated aliphatic organohalogen compounds. Remarkably, the enzyme requires reduced flavin adenine dinucleotide (FAD) (FADH2) for its activity, although the reaction does not involve a net change in the redox state of the coenzyme or substrate. Here we describe the occurrence and characteristics of this unusual flavoenzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号