首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   31篇
  国内免费   2篇
  577篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   10篇
  2014年   12篇
  2013年   42篇
  2012年   25篇
  2011年   21篇
  2010年   23篇
  2009年   17篇
  2008年   22篇
  2007年   44篇
  2006年   23篇
  2005年   39篇
  2004年   46篇
  2003年   58篇
  2002年   45篇
  2001年   14篇
  2000年   8篇
  1999年   8篇
  1998年   15篇
  1997年   11篇
  1996年   8篇
  1995年   9篇
  1994年   6篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   8篇
  1981年   5篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有577条查询结果,搜索用时 15 毫秒
91.
Holocarboxylase synthetase (HLCS) is an enzyme that catalyzes the incorporation of biotin into apo-carboxylases, and its deficiency causes biotin-responsive multiple carboxylase deficiency. The reported sequences of cDNA for human HLCS from liver, lymphocyte, and KG-1 myeloid cell lines differ at their 5' regions. To elucidate variations of the human HLCS mRNA and longer 5' cDNA ends, we performed screening of the human liver cDNA library and rapid amplification of the cDNA ends (RACE). Our results suggest the existence of three types of HLCS mRNA that start at different exons. The first type starts at exon 1, and the second type starts at exon 3, and both are found in various human tissues. The third type, corresponding to the cDNA from the KG-1 cell, starts at exon 2 of the HLCS gene. Various splicing patterns from exons 3-6 were also observed. None of the variations of cDNA found created a new initiation codon. Mutation screening from exons 6-14, therefore, was sufficient to detect amino acid changes in HLCS in patients. Our direct sequencing strategy for screening mutations in the HLCS gene revealed mutations in five Japanese patients and seven non-Japanese patients. Our analyses involving 12 Japanese and 13 non-Japanese patients and studies by others indicate that (1) there is no panethnically prevalent mutation; (2) the Arg508Trp, Gly581Ser, and Val550Met mutations are found in both Japanese and non-Japanese populations; (3) the IVS10+5G-->A mutation is predominant and probably a founder mutation in European patients; (4) the 655-656insA, Leu237Pro, and 780delG mutations are unique in Japanese patients; (5) the spectrum of the mutations in the HLCS gene may vary substantially among different ethnic groups.  相似文献   
92.
Several organosulfur compounds found in garlic extract promoted the survival of rat hippocampal neurons in vitro. From the analysis of structure-activity relationship, thioallyl group in these compounds is essential for the manifestation of neurotrophic activity. S-Allyl-L-cysteine (SAC), one of the organosulfur compounds having thioallyl group in garlic extract, also promoted the axonal branching of cultured neurons. These results suggest that thioallyl compounds make a unique group of neurotrophic factors.  相似文献   
93.
Despite the presence of several human disease genes on chromosome11q13, few of them have been molecularly cloned. Here, we reportthe construction of a contig map encompassing 11q13.1–q13.3using bacteriophage P1 (P1), bacterial artificial chromosome(BAC), and P1-derived artificial chromosome (PAC). The contigmap comprises 32 P1 clones, 27 BAC clones, 6 PAC clones, and1 YAC clone and spans a 3-Mb region from D11S480 to D11S913.The map encompasses all the candidate loci of Bardet-Biedlesyndrome type I (BBS1) and spinocerebellar ataxia type 5 (SCA5),one-third of the distal region for hereditary paraganglioma2 (PGL2), and one-third of the central region for insulin-dependentdiabetes mellitus 4 (IDDM4). In the process of map construction,61 new sequence-tagged site (STS) markers were developed fromthe Not I linking clones and the termini of clone inserts. Wehave also mapped 30 ESTs on this map. This contig map will facilitatethe isolation of polymorphic markers for a more re.ned analysisof the disease gene region and identi.cation of candidate genesby direct cDNA selection, as well as prediction of gene functionfrom sequence information of these bacterial clones.  相似文献   
94.
A chemoenzymatic synthesis of aromatic carboxylic acid vinyl esters   总被引:1,自引:0,他引:1  
The practical synthesis of vinyl p-coumarate (vinyl 4-hydroxycinnamate) and vinyl ferulate (vinyl 4-hydroxy-3-methoxycinnamate) was accomplished via a transesterification to the corresponding aromatic acid using vinyl acetate and a catalytic amount of PdCl2, followed by the lipase-catalyzed regioselective alcoholysis in EtOH.  相似文献   
95.
Angel is the first miniature inverted-repeat transposable element (MITE) isolated from fish. Angel elements are imperfect palindromes with the potential to form stem-loop structures in vitro. Despite sequence divergence of elements of up to 55% within and between species, their inverted repeat structures have been maintained, implying functional importance. We estimate that there are about 103–104 Angels scattered throughout the zebrafish genome, evidence that this family of transposable elements has been significantly amplified over the course of evolution. Angel elements and Xenopus MITEs carry common sequence motifs at their termini, indicating common origin and/or related mechanisms of transposition. We present a model in which MITEs take advantage of the basic cellular mechanism of DNA replication for their amplification, which is dependent on the characteristic inverted repeat structures of these elements. We propose that MITEs are genomic parasites that transpose via a DNA intermediate, which forms by a folding-back of a single strand of DNA, that borrow all of the necessary factors for their amplification from products encoded in the genomes in which they reside. DNA polymorphisms in different lines of zebrafish were detected by PCR using Angel-specific primers, indicating that such elements, combined with other transposons in vertebrate genomes, will be useful molecular tools for genome mapping and genetic analyses of mutations. Received: 7 April 1998 / Accepted: 7 April 1998  相似文献   
96.
The first step of chlorophyll biosynthesis is catalyzed by a Mg-chelatase composed of the subunits CHLI, CHLD and CHLH. Mg-chelatase requires ATP hydrolysis that can be attributed to CHLI. Arabidopsis has two CHLI isoforms, CHLI1 and CHLI2, that have similar expression profiles, but it has been suggested that CHLI2 has limited function in the Mg-chelatase complex. Recently, we showed that Arabidopsis CHLI1 is an ATPase and a target of chloroplast thioredoxin. Here, we demonstrate that CHLI2 also has ATPase activity but with a lower Vmax and higher Km ATP than CHLI1. We confirmed the thioredoxin-dependent reduction of a disulfide bond in CHLI2 and thiol-modulation of its ATPase activity. We then examined the physiological contribution of CHLI2 using a chli2 T-DNA knockout line. Although visible phenotype of homozygous chli2 mutants was almost comparable to wild type, the mutant accumulated significantly less chlorophyll. Furthermore, cs/cs; chli2/chli2 double mutants were almost albino. There were three phenotypes among progenies segregated from the cs/cs; CHLI2/chli2 parent: cs-like pale green, yellow, and almost albino were obtained in the approximate ratio of 1:2:0.7. PCR analysis confirmed that the chli2 mutation is semidominant on a homozygous cs background. These results reveal that although CHLI2 plays a limited role in chlorophyll biosynthesis, this subunit certainly contributes to the assembly of the Mg-chelatase complex.  相似文献   
97.
The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651-amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS)-like subdomain (PLD), the cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) subdomain, and the phytochrome (PHY) subdomain. To define functional roles for these subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, beta-glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations, were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception mutants (those with defective spectral activity), and signaling mutants (those normal in light perception but defective in intracellular signal transfer). Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting. Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot.  相似文献   
98.
-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of - and -2-haloalkanoic acids to produce the corresponding - and -2-hydroxyalkanoic acids, respectively. We have constructed an overproduction system for -2-haloacid dehalogenase from Pseudomonas putida PP3 ( -DEX 312) and purified the enzyme to analyze the reaction mechanism. When a single turnover reaction of -DEX 312 was carried out in H218O by use of a large excess of the enzyme with - or -2-chloropropionate as a substrate, the lactate produced was labeled with 18O. This indicates that the solvent water molecule directly attacked the substrate and that its oxygen atom was incorporated into the product. This reaction mechanism contrasts with that of -2-haloacid dehalogenase, which has an active-site carboxylate group that attacks the substrate to displace the halogen atom. -DEX 312 resembles -2-haloacid dehalogenase from Pseudomonas sp. 113 ( -DEX 113) in that the reaction proceeds with a direct attack of a water molecule on the substrate. However, -DEX 312 is markedly different from -DEX 113 in its substrate specificity. We found that -DEX 312 catalyzes the hydrolytic dehalogenation of 2-chloropropionamide and 2-bromopropionamide, which do not serve as substrates for -DEX 113. -DEX 312 is the first enzyme that catalyzes the dehalogenation of 2-haloacid amides.  相似文献   
99.
Fluoroacetate dehalogenase catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. The enzyme is unique in that it catalyzes the cleavage of the highly stable carbon–fluorine bond in an aliphatic compound. The bacterial isolate FA1, which was identified as Burkholderia, grew on fluoroacetate as the sole carbon source to produce fluoroacetate dehalogenase (FAc-DEX FA1). The enzyme was purified to homogeneity and characterized. The molecular weights were estimated to be 79,000 and 34,000 by gel filtration and SDS-polyacrylamide gel electrophoresis (PAGE), respectively, suggesting that the enzyme is a dimer. The purified enzyme was specific to haloacetates, and fluoroacetate was the best substrate. The activities toward chloroacetate and bromoacetate were less than 5% of the activity toward fluoroacetate. The Km and Vmax values for the hydrolysis of fluoroacetate were 5.1 mM and 11 μmol per minute milligram, respectively. The gene coding for the enzyme was isolated, and the nucleotide sequence was determined. The open reading frame consisted of 912 nucleotides, corresponding to 304 amino acid residues. Although FAc-DEX FA1 showed high sequence similarity to fluoroacetate dehalogenase from Moraxella sp. B (FAc-DEX H1) (61% identity), the substrate specificity of FAc-DEX FA1 was significantly different from that of FAc-DEX H1: FAc-DEX FA1 was more specific to fluoroacetate than FAc-DEX H1.  相似文献   
100.
This review covers the possibility of aerobic thermophilic bacteria (Bacillus strains and thermophilic actinomycetes) and microalgae (Chlorella strains and marine algae) as new biocatalysts for the stereoselective reduction of - and β-keto esters. The mechanistic interpretation of the reduction by a thermophilic actinomycete is also delineated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号