首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1643篇
  免费   108篇
  2023年   8篇
  2022年   10篇
  2021年   18篇
  2020年   14篇
  2019年   21篇
  2018年   27篇
  2017年   20篇
  2016年   33篇
  2015年   38篇
  2014年   69篇
  2013年   106篇
  2012年   91篇
  2011年   77篇
  2010年   45篇
  2009年   40篇
  2008年   73篇
  2007年   93篇
  2006年   82篇
  2005年   60篇
  2004年   58篇
  2003年   60篇
  2002年   53篇
  2001年   48篇
  2000年   67篇
  1999年   42篇
  1998年   12篇
  1997年   10篇
  1996年   13篇
  1995年   13篇
  1992年   42篇
  1991年   43篇
  1990年   44篇
  1989年   43篇
  1988年   42篇
  1987年   26篇
  1986年   21篇
  1985年   17篇
  1984年   17篇
  1983年   17篇
  1982年   13篇
  1981年   11篇
  1980年   12篇
  1979年   10篇
  1974年   6篇
  1972年   6篇
  1971年   8篇
  1969年   9篇
  1968年   10篇
  1967年   6篇
  1966年   8篇
排序方式: 共有1751条查询结果,搜索用时 31 毫秒
991.
Adenylyl cyclase-dependent axonal targeting in the olfactory system   总被引:3,自引:0,他引:3  
The vertebrate olfactory bulb is a remarkably organized neuronal structure, in which hundreds of functionally different sensory inputs are organized into a highly stereotyped topographical map. How this wiring is achieved is not yet understood. Here, we show that the olfactory bulb topographical map is modified in adenylyl cyclase 3 (adenylate cyclase 3)-deficient mice. In these mutants, axonal projection targets corresponding to specific odorant receptors are disorganized, are no longer exclusively innervated by functionally identical axonal projections and shift dramatically along the anteroposterior axis of the olfactory bulb. Moreover, the cyclase depletion leads to the prevention of neuropilin 1 (Nrp1) expression in olfactory sensory neuron axonal projections. Taken together, our data point to a major role played by a crucial element of the odorant-induced transduction cascade, adenylyl cyclase 3, in the targeting of olfactory sensory neuron axons towards the brain. This mechanism probably involves the regulation of receptor genes known to be crucial in axonal guidance processes.  相似文献   
992.
Ticks are obligate hematophagous ectoparasites with a life cycle characterized by a period of starvation; many ticks spend more than 95% of their life off the host. Autophagy, which is the process of bulk cytoplasmic degradation in eukaryotic cells, is induced by starvation and is essential for extension of the lifespan. Therefore, we hypothesized that autophagy also occurs in ticks; however, there has been no report on autophagy-related (ATG) genes in ticks. Here, we show the homologue of an ATG gene, ATG12, and its expression pattern from the nymphal to adult stages in the three-host tick Haemaphysalis longicornis. The sequence analysis showed that H. longicornis ATG12 (HlATG12) cDNA is 649bp, has a 411bp ORF coding for a 136-amino acid polypeptide with the carboxy-terminal glycine residue, and has a predicted molecular mass of 15.2kDa. Moreover, RT-PCR revealed that HlATG12 was downregulated at the beginning of feeding, upregulated after engorgement, and downregulated again after molting. The expression level of HlATG12 was highest at 3 months after engorgement. By immuno-electron microscopy, it was demonstrated that HlAtg12 was localized to the region around granule-like structures within midgut cells of unfed adults. In conclusion, HlATG12 might function during unfed and molting stages.  相似文献   
993.
To establish the genetic tools for conditional gene deletion in mouse retinal progenitors, we generated a Dkk3-Cre transgenic mouse line using bacterial artificial chromosome (BAC) transgenesis. Cre recombination efficiency in vivo was assayed by crossing this transgenic line, termed BAC-Dkk3-Cre, with the CAG-CAT-Z reporter line. This BAC-Dkk3-Cre line showed Cre recombinase activity in most retinal progenitors. Cre activity was detectable from embryonic day 10.5 (E10.5) and generally restricted to the retina during embryogenesis. To verify that BAC-Dkk3-Cre mice successfully circumvented lethality, we generated Otx2flox/flox/BAC-Dkk3-Cre+ mice as Otx2 conditional knockout mice. The Otx2flox/flox/BAC-Dkk3-Cre+ mice were viable, and their retina showed loss of mature cell-type markers of photoreceptor cells, bipolar cells, and horizontal cells, in contrast, amacrine-like cells noticeably increased. Thus, the BAC-Dkk3-Cre transgenic mouse line provides a powerful tool for generating conditional knockout mouse lines for studying loss of gene functions in the developing retina.  相似文献   
994.
The bilayer phase transitions of a series of ether-linked phospholipids, 1,2-dialkylphosphatidylcholines containing linear saturated alkyl chain (Cn = 12, 14, 16 and 18), were observed by differential scanning calorimetry (DSC) under ambient pressure and light-transmittance measurements under high pressure. The thermodynamic quantities of the pre- and main-transitions for the ether-linked PC bilayer membranes were calculated and compared with those of a series of ester-linked PCs, 1,2-diacylphosphatidylcholines. The thermodynamic quantities of the main transition for the ether-linked PC bilayers showed distinct dependence on alkyl-chain length and were slightly different from those of the ester-linked PC bilayers. From the comparison of thermodynamic quantities for the main transition between both PC bilayers, we revealed that the attractive interaction in the gel phase for the ether-linked PC bilayers is weaker than that for the ester-linked PC bilayers. Regarding the pretransition, although changes in enthalpy and entropy for both PC bilayers were comparable to each other, the volume changes of the ether-linked PC bilayers roughly doubled those of the ester-linked PC bilayers. The larger volume change results from the smallest partial molar volume of the ether-linked PC molecule in the interdigitated gel phase. Further, we constructed the temperature-pressure phase diagrams for the ether-linked PC bilayers by using the phase-transition data. The region of the interdigitated gel phase in the phase diagrams was extended by applying pressure and by increasing the alkyl-chain length of the molecule. Comparing the phase diagrams with those for the ester-linked PC bilayers, it was proved that the phase behavior of the ester-linked PC bilayers under high temperature and pressure is almost equivalent to that of the ether-linked PC bilayers in the vicinity of ambient pressure.  相似文献   
995.
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping of patients’ DMD pre-mRNA induced by antisense oligonucleotides (AOs) is expected to produce shorter but partly functional dystrophin proteins, such as those possessed by patients with the less severe Becker muscular dystrophy. We are working on developing modified nucleotides, such as 2′-O,4′-C-ethylene-bridged nucleic acids (ENAs), possessing high nuclease resistance and high affinity for complementary RNA strands. Here, we demonstrate the preclinical characteristics (exon-skipping activity in vivo, stability in blood, pharmacokinetics, and tissue distribution) of renadirsen, a novel AO modified with 2′-O-methyl RNA/ENA chimera phosphorothioate designed for dystrophin exon 45 skipping and currently under clinical trials. Notably, systemic delivery of renadirsen sodium promoted dystrophin exon skipping in cardiac muscle, skeletal muscle, and diaphragm, compared with AOs with the same sequence as renadirsen but conventionally modified by PMO and 2′OMePS. These findings suggest the promise of renadirsen sodium as a therapeutic agent that improves not only skeletal muscle symptoms but also other symptoms in DMD patients, such as cardiac dysfunction.  相似文献   
996.
997.
Matsuo K  Hong JS  Tabayashi N  Ito A  Masuta C  Matsumura T 《Planta》2007,225(2):277-286
We have developed Cucumber mosaic virus (CMV) as a plant virus vector especially for production of pharmaceutical proteins. The CMV vector is a vector modifiable for different host plants and does not require further engineering steps. CMV contains three genomic RNA molecules (RNAs 1–3) necessary for infectivity. With this system, instead of creating different vector constructs for each plant we use, we take advantage of the formation of pseudrecombinants between two CMV isolates by simply reassembling a vector construct (RNA 2 base) and an RNA molecule containing the host determinant (mostly RNA 3). In this study, the gene for acidic fibroblast growth factor (aFGF), one of the human cytokines, was cloned under the control of the subgenomic promoter for RNA 4A of the CMV-based vector, C2-H1. Infected Nicotiana benthamiana plants produced aFGF at levels up to 5–8% of the total soluble protein. The tobacco-produced aFGF was purified, and its biological activity was confirmed. Using this system, which provides a versatile and viable strategy for the production of therapeutic proteins in plants, we also demonstrated a high level of aFGF in Glycine max (soybean) and Arabidopsis thaliana.  相似文献   
998.
We examined the physiological effects of brassinosteroids (BRs) on early growth of Arabidopsis. Brassinazole (Brz), a BR biosynthesis inhibitor, was used to elucidate the significance of endogenous BRs. It inhibited growth of roots, hypocotyls, and cotyledonous leaf blades dose-dependently and independent of light conditions. This fact suggests that endogenous BRs are necessary for normal growth of individual organs of Arabidopsis in both photomorphogenetic and skotomorphogenetic programs. Exogenous brassinolide (BL) promoted hypocotyl elongation remarkably in light-grown seedlings. Cytological observation disclosed that BL-induced hypocotyl elongation was achieved through cell enlargement rather than cell division. Furthermore, a serial experiment with hormone inhibitors showed that BL induced hypocotyl elongation not through gibberellin and auxin actions. However, a synergistic relationship of BL with gibberellin A3 (GA3) and indole-3-acetic acid (IAA) was observed on elongation growth in light-grown hypocotyls, even though gibberellins have been reported to be additive to BR action in other plants. Taken together, our results show that BRs play an important role in the juvenile growth of Arabidopsis; moreover, BRs act on light-grown hypocotyl elongation independent of, but cooperatively with, gibberellins and auxin.  相似文献   
999.
1000.
The ancestral kareniacean dinoflagellate has undergone tertiary endosymbiosis, in which the original plastid is replaced by a haptophyte endosymbiont. During this plastid replacement, the endosymbiont genes were most likely flowed into the host dinoflagellate genome (endosymbiotic gene transfer or EGT). Such EGT may have generated the redundancy of functionally homologous genes in the host genome—one has resided in the host genome prior to the haptophyte endosymbiosis, while the other transferred from the endosymbiont genome. However, it remains to be well understood how evolutionarily distinct but functionally homologous genes were dealt in the dinoflagellate genomes bearing haptophyte‐derived plastids. To model the gene evolution after EGT in plastid replacement, we here compared the characteristics of the two evolutionally distinct genes encoding plastid‐type glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) in Karenia brevis and K. mikimotoi bearing haptophyte‐derived tertiary plastids: “gapC1h” acquired from the haptophyte endosymbiont and “gapC1p” inherited from the ancestral dinoflagellate. Our experiments consistently and clearly demonstrated that, in the two species examined, the principal plastid‐type GAPDH is encoded by gapC1h rather than gapC1p. We here propose an evolutionary scheme resolving the EGT‐derived redundancy of genes involved in plastid function and maintenance in the nuclear genomes of dinoflagellates that have undergone plastid replacements. Although K. brevis and K. mikimotoi are closely related to each other, the statuses of the two evolutionarily distinct gapC1 genes in the two Karenia species correspond to different steps in the proposed scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号